90 research outputs found

    EIF2AK2 (eukaryotic translation initiation factor 2-alpha kinase 2)

    Get PDF
    Review on EIF2AK2 (eukaryotic translation initiation factor 2-alpha kinase 2), with data on DNA, on the protein encoded, and where the gene is implicated

    Combined effects of aberrant MEK1 activity and BCL2 overexpression on relieving the cytokine dependency of human and murine hematopoietic cells

    Get PDF
    The MEK1 oncoprotein plays a critical role in Ras/Raf/ MEK/MAPK-mediated transmission of mitogenic signals from cell surface receptors to the nucleus. In order to examine this pathway's role in leukemic transformation, a conditionally active (β-estradiol-inducible) form of the MEK1 protein was created by ligating a cDNA encoding an N-terminal truncated form of MEK1 to the hormone-binding domain of the estrogen receptor (ER). We introduced this chimeric ΔMEK1:ER oncoprotein into cytokine-dependent human TF-1 and murine FDC-P1 hematopoietic cell lines. Two different types of cells were recovered after drug selection in medium containing either cytokine or β-estradiol: (1) cells that expressed the ΔMEK1:ER oncoprotein but remained cytokine-dependent and (2) MEK1-responsive cells that grew in response to ΔMEK1:ER activation. Cytokine-dependent cells were recovered 102 to 104 times more frequently than MEK1-responsive cells depending upon the particular cell line. To determine whether BCL2 overexpression could synergize with the ΔMEK1:ER oncoprotein in relieving cytokine dependence, the cytokine-dependent ΔMEK1:ER-expressing cells were infected with a BCL2-containing retrovirus, and the frequency of MEK1-responsive cells determined. BCL2 overexpression, by itself, did not relieve cytokine dependency of the parental cells, however, it did increase the frequency at which MEK1-responsive cells were recovered approximately 10-fold. ΔMEK1:ER+BCL2 cells remained viable for at least 3 days after estradiol deprivation, whereas viability was readily lost upon withdrawal of β-estradiol in the MEK1-responsive cells which lacked BCL2 overexpression. The MAP kinases, ERK1 and ERK2 were activated in response to ΔMEK1:ER stimulation in both ΔMEK1:ER and ΔMEK1:ER+BCL2 cells. As compared to the cytokine-dependent ΔMEK1:ER and BCL2 infected cells, MEK1-responsive BCL2 infected cells expressed higher levels of BCL2. While both MEK1-responsive ΔMEK1:ER and ΔMEK1:ER+BCL2 infected cells expressed cDNAs encoding the autocrine cytokine GM-CSF, more GM-CSF cDNAs and bioactivity were detected in the MEK1-responsive ΔMEK1:ER+BCL2 cells than in the MEK1-responsive cells lacking BCL2 or cytokine-dependent cells. These conditionally transformed cells will be useful in furthering our understanding of the roles MEK1 and BCL2 play in the prevention of apoptosis in hematopoietic cells

    Retargeted adenoviruses for radiation-guided gene delivery

    Get PDF
    The combination of radiation with radiosensitizing gene delivery or oncolytic viruses promises to provide an advantage that could improve the therapeutic results for glioblastoma. X-rays can induce significant molecular changes in cancer cells. We isolated the GIRLRG peptide that binds to radiation-inducible 78 kDa glucose-regulated protein (GRP78), which is overexpressed on the plasma membranes of irradiated cancer cells and tumor-associated microvascular endothelial cells. The goal of our study was to improve tumor-specific adenovirus-mediated gene delivery by selectively targeting the adenovirus binding to this radiation-inducible protein. We employed an adenoviral fiber replacement approach to conduct a study of the targeting utility of GRP78-binding peptide. We have developed fiber-modified adenoviruses encoding the GRP78-binding peptide inserted into the fiber-fibritin. We have evaluated the reporter gene expression of fiber-modified adenoviruses in vitro using a panel of glioma cells and a human D54MG tumor xenograft model. The obtained results demonstrated that employment of the GRP78-binding peptide resulted in increased gene expression in irradiated tumors following infection with fiber-modified adenoviruses, compared with untreated tumor cells. These studies demonstrate the feasibility of adenoviral retargeting using the GRP78-binding peptide that selectively recognizes tumor cells responding to radiation treatment

    Constitutive MAP Kinase Activation in Hematopoietic Stem Cells Induces a Myeloproliferative Disorder

    Get PDF
    Myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPNs) are a group of myeloid neoplasms in which abnormal activation of the Ras signaling pathway is commonly observed. The PI3K/Akt pathway is a known target of Ras; however, activation of the PI3K/Akt pathway has been shown to lead to neoplastic transformation of not only myeloid but also lymphoid cells, suggesting that pathways other than the PI3K/Akt pathway should play a central role in pathogenesis of Ras-mediated MDS/MPN. The MEK/ERK pathway is another downstream target of Ras, which is involved in regulation of cell survival and proliferation. However, the role of the MEK/ERK pathway in the pathogenesis of MDS/MPN remains unclear. Here, we show that introduction of a constitutively activated form of MEK into hematopoietic stem cells (HSCs) causes hematopoietic neoplasms that are limited to MDS/MPNs, despite the multipotent differentiation potential of HSCs. Active MEK-mediated MDS/MPNs are lethal, but are not considered a frank leukemia because it cannot be transplanted into naĂŻve animals. However, transplantation of MDS/MPNs co-expressing active MEK and an anti-apoptotic molecule, Bcl-2, results in T-cell acute lymphocytic leukemia (T-ALL), suggesting that longevity of cells may impact transplantability and alter disease phenotype. Our results clearly demonstrate the proto-oncogenic property of the MEK/ERK pathway in hematopoietic cells, which manifest in MDS/MPN development

    Effect of hypoxia-inducible factor-1α on transcription of survivin in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survivin is a structurally and functionally unique member of the inhibitor of apoptosis protein (IAP) family. It plays an important role, not only in regulating mitosis but also in inhibiting apoptosis. The current literature contains few reports on the transcriptional regulation of survivin expression in lung cancer.</p> <p>Methods</p> <p>In this study, we investigated the effect of hypoxia-inducible factor-1α (HIF-1α) on the transcriptional activity of the survivin promoter in non-small cell lung cancer (NSCLC). Immunohistochemical staining was used to detect the expression of survivin and HIF-1α in the lung tissue of 120 patients with non-small cell lung cancer (NSCLC) and 40 patients with benign pulmonary disease. We also performed experiments with the lung adenocarcinoma cell line A549 cells, which were cultured under hypoxic conditions. The expression of survivin and HIF-1α was detected by real-time RT-PCR and Western blotting. In the survivin promoter the putative binding-site for HIF-1α, is -19 bp~-16 bp upstream of TSS. We performed site-directed mutagenesis of this binding site, and used luciferase reporter plasmids to determine the relative activity of the survivin promoter in A549 cells. We also studied the effect of HIF-1α on the expression of survivin by dsRNA targeting of HIF-1α mRNA.</p> <p>Results</p> <p>HIF-1α (58.33%) and survivin (81.60%) were both over-expressed in NSCLC and their expressions correlated with one another. They were also expressed in A549 cells under normal and hypoxic conditions, with a significant increase under hypoxic conditions. Site directed mutagenesis of the putative binding site for HIF-1α in the survivin promoter significantly decreased the activity of the survivin promoter in A549 cells. Inhibition of HIF-1α by RNAi decreased the expression of survivin in A549 cell lines.</p> <p>Conclusion</p> <p>Our results indicate that the binding of HIF-1α to the survivin promoter increases transcription of the survivin gene. Thus, HIF-1α is an important transcriptional regulator of survivin expression</p

    The Proteomic Code: a molecular recognition code for proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Proteomic Code is a set of rules by which information in genetic material is transferred into the physico-chemical properties of amino acids. It determines how individual amino acids interact with each other during folding and in specific protein-protein interactions. The Proteomic Code is part of the redundant Genetic Code.</p> <p>Review</p> <p>The 25-year-old history of this concept is reviewed from the first independent suggestions by Biro and Mekler, through the works of Blalock, Root-Bernstein, Siemion, Miller and others, followed by the discovery of a Common Periodic Table of Codons and Nucleic Acids in 2003 and culminating in the recent conceptualization of partial complementary coding of interacting amino acids as well as the theory of the nucleic acid-assisted protein folding.</p> <p>Methods and conclusions</p> <p>A novel cloning method for the design and production of specific, high-affinity-reacting proteins (SHARP) is presented. This method is based on the concept of proteomic codes and is suitable for large-scale, industrial production of specifically interacting peptides.</p

    Regulation of the Mitogen Activated Protein Kinase Kinase (MEK)-1 by NAD-Dependent Deacetylases

    Get PDF
    Sirtuins are class III deacetylases that regulate many essential processes, including cellular stress, genome stability, and metabolism. Although these NAD+-dependent deacetylases control adaptive cellular responses, identification of sirtuin-regulated signaling targets remain under-studied. Here, we demonstrate that acetylation of the mitogen-activated protein kinase kinase-1 (MEK1) stimulates its kinase activity, and that acetylated MEK1 is under the regulatory control of the sirtuin family members SIRT1 and SIRT2. Treatment of cells with sirtuin inhibitors, or siRNA knockdown of SIRT1 or SIRT2 proteins, increases MEK1 acetylation and subsequent phosphorylation of the extracellular signal-regulated kinase (ERK). Generation of an acetyl-specific MEK1 antibody demonstrates that endogenous acetylated MEK1 is extensively enriched in the nucleus following epidermal growth factor (EGF) stimulation. An acetyl-mimic of MEK1 increases inappropriate growth properties, suggesting that acetylation of MEK1 has oncogenic potential

    Targeting neuroinflammation for therapeutic intervention in neurodegenerative pathologies: A role for the peptide analogue of thymulin (PAT)

    Get PDF
    Introduction: Inflammation has a vital task in protecting the organism, but when deregulated, it can have serious pathological consequences. The central nervous system (CNS) is capable of mounting immune and inflammatory responses, albeit different from that observed in the periphery. Neuroinflammation, however, can be a major contributor to neurodegenerative diseases and constitute a major challenge for medicine and basic research. Areas covered: Both innate and adaptive immune responses normally play an important role in homeostasis within the CNS. Microglia, astrocytes and neuronal cells express a wide array of toll-like receptors (TLR) that can be upregulated by infection, trauma, injuries and various exogenic or endogenic factors. Chronic hyper activation of brain immune cells can result in neurotoxic actions due to excessive production of several pro-inflammatory mediators. Several studies have recently described an important role for targeting receptors such as nicotinic receptors located on cells in the CNS or in other tissues for the control of inflammation. Expert opinion: Thymulin and its synthetic peptide analogue (PAT) appear to exert potent anti-inflammatory effects at the level of peripheral tissues as well as at the level of the brain. This effect involves, at least partially, the activation of cholinergic mechanisms. © 2012 Informa UK, Ltd
    • …
    corecore