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Identity 
Other names: EIF2AK1, PKR, p68 kinase, PRKR 

HGNC (Hugo): EIF2AK2 

Location: 2p22.2 

Local order: HEAT repeat containing 5B 
(HEATR5B); coiled-coil domain containing 75 
(CCDC75); Eukaryotic translation initiation factor 
2-alpha kinase 2 (EIF2AK2); sulfotransferase family 
member, cytosolic, 6B, member 1 (SULT6B1); 
ribosomal protein L31 pseudogene 16 (RPL31P16). 

DNA/RNA 
Description 
The EIF2AK2 gene spans approximately 50 kb and 
contains 17 exons.  
The coding sequence initiates in exon 3 (Kuhen et al., 
1996). 

Transcription 
Key Promoter Elements: TATA-less (No TATA Box). 
1. KCS (Kinase Conserved Sequence): Nucleotides -
67 to -81 from the transcriptional start site.  
Required for basal expression utilizing Sp factors. Also 
required in combination with the ISRE for interferon-
stimulated expression (Kuhen and Samuel, 1997; 

Kuhen et al., 1998; Kuhen and Samuel, 1999; Ward 
and Samuel, 2002). 
2. ISRE (Interferon-stimulated response element): 
Nucleotides -50 to -62 from the transcriptional start 
site. Required for the interferon-inducible expression of 
EIF2AK2. Regulated by the binding of STAT1, STAT2 
and IRF9 (Kuhen and Samuel, 1997; Kuhen and 
Samuel, 1999; Ward and Samuel, 2002; Ward and 
Samuel, 2003). 
3. P53RE (p53 response element):Two p53RE 
domains were identified flanking the ISRE. Acts to 
enhance EIF2AK2 expression following genotoxic 
stress (Yoon et al., 2009). 
Transcripts: 
Three (3) transcripts have been identified based on 
alternate splicing of exon 1 with exon 2 in the 5'UTR. 
No change to the protein is observed with these 
transcripts (Kawakubo et al., 1999). 
One (1) alternately spliced transcript (Tissue: Placenta) 
resulting in the loss of exon 12 (Gerhard et al., 2004). 
One (1) alternately spliced transcript (Tissue: 
Brain/Lung) resulting in the loss of exon 11 (Gerhard et 
al., 2004). 
One (1) transcript (Tissue: Brain) which results from an 
alternate splice acceptor site in exon 17 (Gerhard et al., 
2004). 

Pseudogene 
None. 
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The stick diagram shows the splicing of the exons that compose PKR as well as confirmed and unconfirmed (suggested by cDNA 
libraries from the Mammalian Gene Collection (MGC) only) splicing products and the length of their resulting protein products. The coding 
sequence for PKR initiates in exon 3 at the 17th nucleotide. The coding sequence of PKR is 1656 base pairs; the individual exons contain 
the following coding nucleotides: exon 3 (1-118); exon 4 (119-240); exon 5 (241-389); exon 6 (390-516); exon 7 (517-593); exon 8 (594-
687); exon 9 (688-722); exon 10 (723-785); exon 11 (786-908); exon 12 (909-1067); exon 13 (1068-1248); exon 14 (1249-1377); exon 15 
(1378-1479); exon 16 (1480-1533); exon 17 (1534-1656). 
 

Protein 
Note 
The protein product of the EIF2AK2 gene is typically 
referred to as PKR in the literature. 

Description 
EIF2AK2/PKR is a 551 amino acid protein with a 
predicted molecular weight of 62,1 kDa (68-72 kDa in 
SDS-PAGE) and a predicted pI of 8,58. PKR first 
described as an interferon-inducible antiviral kinase 
which phosphorylated eIF2-alpha on Ser 51, is now 
best described as a general stress/inflammatory kinase 
which phosphorylates an increasing list of substrates 
which includes eIF2-alpha (Colthurst et al., 1987), p53 
(Cuddihy et al., 1999), B56-alpha (Xu and Williams, 
2000), cyclin dependent kinase (CDK)-1 (Yoon et al., 
2010), and vinsulin receptor substrate-1 (Nakamura et 
al., 2010). 

Expression 
Ubiquitous. 

Localisation 
Cytoplasm, nuclear, nucleolar. 
 
 

Function 
Major role 
The double-stranded RNA dependent kinase (PKR) 
was initially identified as an innate immune anti-viral 
protein approximately 35 years ago (Roberts et al., 
1976b; Roberts et al., 1976a).  
Since then PKR has been linked to normal cell growth 
and differentiation, inflammation, cytokine signaling 
and apoptosis (Garcia et al., 2006). Altered PKR 
activity has been shown to play a role in 
neurodegenerative diseases (Alzheimer's, Huntington's 
and Parkinson's) and cancer (Peel et al., 2001; Peel and 
Bredesen, 2003; Onuki et al., 2004; Peel, 2004; Bando 
et al., 2005; Eley et al., 2009).  
PKR belongs to the eIF2α kinase family which also 
includes PKR-like endoplasmic reticulum kinase 
(PERK), general amino acid control of gene 
expression, non-derepressing 2 (GCN2) and heme-
regulated kinase (HRI).  
Whereas the activation of PERK, GCN2 and HRI are in 
response to more specific stresses; PKR is activated in 
response to diverse stress signals (Shi et al., 1998; 
Berlanga et al., 1999; Williams, 1999; Chen, 2007). 
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The primary amino acid sequence of PKR. The alternate exons to which the individual amino acids belong are indicated by shading. 
Translation of PKR initiates in exon 3 and terminates in exon 17. 

 

The primary protein structure for PKR. Key domains of the protein and the amino acids that compose them are shown, as are the key 
phosphorylation site(s) which are required for kinase activity (T451) (Romano et al., 1998; Zhang et al., 2001) or enhance kinase activity 
(Y101, Y162, S242, T255, T258, Y293 and T446) (Romano et al., 1998; Alisi et al., 2005; Su et al., 2006). 

 
As the first known substrate of PKR was eIF2α, much 
of the research involving PKR has centered on its 
ability to regulate translation under varying conditions. 
Within the past ten years, PKR has been shown to play 
a significant role in signaling pathways involved in 
other cellular process such as cell proliferation, 
differentiation, metabolism, DNA repair and apoptosis 
(Garcia et al., 2006). 
Among the targets that PKR has been demonstrated to 
phosphorylate or directly influence the phosphorylation 
of are: p53, signal transducer and activators of 
transcription factors STAT1 and STAT3, inhibitor κB 
kinase (IKK)-β, inhibitor κB (IκB)-β, the B56α 
regulatory subunit of PP2A, and RNA helicase (Garcia 
et al., 2006; Sadler et al., 2009). In addition to these 
targets, PKR has been shown to influence signaling 
through the phosphatidylinositol-3 kinase (PI3K)/AKT 
pathway and transcription factors NF-κB, C/EBPα, 
C/EBPβ and ATF3. PKR also influences signaling 
through the MAPK signal transduction pathways. PKR 
activity is required for activation of p38-MAPK and 
JNK in response to particular stresses, and signaling 
through these MAPKs is defective in PKR-/- cells. The 
PKR dependent mechanism involved in p38MAPKand 
JNK activation may involve the interaction of PKR 
with ASK1 or MKK6. Additionally, inhibition of 
protein synthesis may reduce the level of negative 
regulators of these kinases (Garcia et al., 2006). 
Activation 
PKR activation was originally thought to occur only in 
the presence of double-stranded RNA (ex. viral 
infection). Over time increasing evidence has indicated 
that PKR activation is induced by cytotoxic cytokines 
(tumor necrosis factor (TNF)-α and IFNγ), growth 
factor deprivation, oxidative stress and DNA damage 
(Garcia et al., 2006). 

PKR is potentially serine/threonine and tyrosine 
phosphorylated on 105 different sites (54 Ser, 33 Thr 
and 18 Tyr), including 15 suspected 
autophosphorylation sites. Of these, only 8 sites have 
so far been identified, and their significance to PKR 
activation determined. Phosphorylation of Thr451 in 
the catalytic domain of PKR is required for minimal 
kinase activity (Romano et al., 1998; Zhang et al., 
2001). An additional phosphorylation of PKR on 
Thr446 serves to augment PKR activity (Romano et al., 
1998; Alisi et al., 2005). 
In addition to Thr446/451 phosphorylation, 
phosphorylation on three key tyrosine residues 
(Tyr101/162/293) is also required for maximal PKR 
activity (Su et al., 2006). In cell culture, PKR appears 
to be constitutively tyrosine phosphorylated, but the 
exact tyrosine sites that are phosphorylated have not 
been determined nor has the kinase(s) responsible for 
these phosphorylations. PKR kinase assays using wild-
type eIF2α or mutants Ser51Thr or Ser51Tyr revealed  
that PKR could phosphorylate the residue at position 51 
equally (Lu et al., 1999). One suggestion is that PKR 
possess tyrosine kinase ability and is able to 
autophosphorylate (Lu et al., 1999). This is supported 
by the finding that a catalytically-inactive mutant 
(K296R) of PKR is not tyrosine phosphorylated in vitro 
and in vivo (Su et al., 2006). More recent, findings 
indicate PKR is associated with JAK1 and TYK2 
kinases in resting cells. Following interferon 
stimulation, exogenously expressed JAK1 and TYK2 
were demonstrated to phosphorylate Tyr101 and 
Tyr293 (Su et al., 2007). Similarly the catalytic mutant 
of PKR was also tyrosine phosphorylated by the JAK 
kinases. As tyrosine phosphorylation of PKR in 
response to dsRNA is not affected in cells deficient in 
JAK kinases, other tyrosine kinases may potentially 
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phosphorylate these sites in response to different 
stresses (Su et al., 2007).  
The role of PKR as a non-receptor tyrosine kinase 
remains controversial. 
eIF2α 
In order to properly initiate translation, the eIF2 
complex must hydrolyze GTP to GDP in the presence 
of Met-tRNA and the 40S ribosomal subunit.  
Efficient recycling of the complex then involves the 
removal of GDP and the re-loading of GTP to the eIF2 
complex; a process carried-out by the GTP-exchange 
factor, eIF2B (Kimball et al., 1998). Phosphorylation of 
the eIF2α subunit turns the eIF2 complex into a 
competitive inhibitor. Those eIF2 complexes 
containing phosphorylated eIF2α demonstrate 
increased affinity for eIF2B and associate, blocking the 
eIF2 complex in the GDP bound state (Krishnamoorthy 
et al., 2001). As the eIF2 complex is in excess of 
eIF2B, a small amount of phosphorylated eIF2α can 
result in a shut-off of general translation (Kimball et 
al., 1998; Sudhakar et al., 2000; Krishnamoorthy et al., 
2001; Nika et al., 2001; Wek et al., 2006). The 
inhibition of general translation is mainly thought to be 
pro-apoptotic, but recent evidence has suggested that 
this may be a cellular defense mechanism against 
stresses (Wek et al., 2006). 
Phosphorylation of eIF2α results in a shut-off of 
general translation but at the same time allows for 
efficient translation of uORFs in particular mRNAs, 
such as ATF4, due to their 5' structure; or through what 
is termed internal ribosome entry site (IRES)-mediated 
translation (Fernandez et al., 2002; Gerlitz et al., 2002; 
Yaman et al., 2003). Many of these mRNAs encode 
proteins involved in the stress response (Koschmieder 
et al., 2007; van den Beucken et al., 2007; Lee et al., 
2009). Short-term inhibition of general translation 
through eIF2α phosphorylation may in fact be pro-
survival by allowing for cellular repair following a 
particular stress (Donze et al., 2004). 
p53 
PKR was shown to phosphorylate cytoplasmic p53 on 
Ser392 enhancing p53 tetramer stability and 
transcriptional activation of p53 targeted genes 
(Sakaguchi et al., 1997; Cuddihy et al., 1999; Keller et 
al., 2001). Among these are p21-Cip1, BAX, PUMA 
and several pro-caspases. The implications of this 
phosphorylation are a PKR-mediated cell cycle arrest 
and induction of apoptosis. Inhibition of constitutive 
PKR activity in several acute leukemia cells lines with 
a small molecule inhibitor has been observed to lead to 
p53 degradation (Unpublished results). Although the 
exact mechanism for p53 degradation has not been 
determined, it likely involves the activation of AKT, 
whose phosphorylation and activity are observed to 
increase, and AKT effects upon MDM2 (Blalock et al., 
2009). Additionally, the cellular PKR activator 
RAX/PACT was demonstrated to result in increased 
cellular levels of p53, p53 transcriptional activity and 
growth arrest in a PKR dependent manner (Bennett et 

al., 2012). Expression of a siRNA to RAX, which 
blocks the ability of most stresses to activate PKR, 
resulted in the decreased expression of several p53 
regulated genes such as p21Cip1and PUMA and lower 
constitutive levels of p53. RAX resulted in the 
SUMOylation of p53 in a PKR independent manner, 
through direct interaction and activation of the E2 
ligase Ubc9 (Bennett et al., 2012). 
NF-κB 
PKR association with inhibitor κB kinase (IKK) was 
demonstrated to induce NF-κB nuclear translocation 
and transcriptional activity (Gil et al., 2000; Zamanian-
Daryoush, et al., 2000). While initially PKR kinase 
activity was implicated in the activation of NF-κB, 
PKR catalytic activity is not a requirement. Truncated 
forms of PKR consisting of the amino terminus were 
shown to associate with the IKK complex and stimulate 
IκBβ phosphorylation (Bonnet et al., 2000; Bonnet et 
al., 2006). Later, Donze et al. showed that PKR 
irregardless of catalytic activity could induce NF-κB 
activation and the synthesis of some NF-κB dependent 
transcripts, but NF-κB activity and transcription of 
other NF-κB dependent genes was greatly potentiated 
when PKR kinase activity remained intact (Donze et 
al., 2004). These data suggest that both PKR 
association with IKK and PKR catalytic activity are 
important for PKR mediated effects on NF-κB. To this 
end the current understanding is that PKR activity is 
required for the full effects of PKR on NF-κB, although 
whether PKR catalytic activity influences NF-κB 
activation at the point of IκB phosphorylation and 
release or at later points, has not been sorted-out. 
STATs 
PKR has also been demonstrated to affect the 
transactivation of STATs 1 and 3 (Karehed et al., 
2007). STAT1 activity is enhanced by phosphorylation 
on Ser727. Phosphorylation of this site is defective in 
PKR-/- fibroblasts resulting in a decrease of STAT1 
transactivation (Ramana et al., 2000). PKR kinase 
activity is not necessary for PKR effects on STAT1 
(Wong et al., 1997); instead, PKR associates through 
its NH2-terminus with STAT1, which apparently 
enhances mitogen activated protein kinase (MAPK)-
mediated phosphorylation of STAT1 on Ser727 (Deb et 
al., 2001). Similar to STAT1, PKR has also been 
demonstrated to be required for proper phosphorylation 
and transactivation of STAT3. Like STAT1, PKR 
effects were mediated through MAPK-dependent 
phosphorylation of STAT3 (Deb et al., 2001). In the 
absence of PKR, activation of STAT3 by platelet 
derived growth factor (PDGF) is impaired (Deb et al., 
2001). 
PP2A 
PKR was shown in a yeast-two hybrid system to 
associate with B56α in a manner dependent on PKR 
catalytic activity.  
PKR phosphorylated B56α at multiple sites in vitro 
(among these Ser28) leading to enhanced PP2A activity 
(Xu and Williams, 2000).  
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The enhancement of PP2A activity via PKR 
phosphorylation of B56α resulted in decreased 
phosphorylation of eIF4E and a lower rate of 
translation. More recently additional effects of PKR on 
PP2A activity have been observed. The lymphocytic 
leukemia cell line REH contains both elevated levels of 
active PKR and a BCL2 targeted phosphatase activity. 
PKR was shown to phosphorylate B56α on Ser28 in 
REH cells which led to PP2A targeting to the 
mitochondria and dephosphorylation of BCL2 (Ruvolo 
et al., 2008). PKR activity was also shown to stabilize 
B56α, but this stabilization was not dependent on Ser28 
phosphorylation but instead on eIF2α phosphorylation. 
CDK1 
Yoon et al. demonstrated that during genotoxic stress 
PKR is responsible for phosphorylating Cdc2 (CDK1) 
on Tyr4. Phosphorylation at this site was shown to 
result in ubiquitination and proteosomal degradation of 
Cdc2 thus resulting in a G2 arrest (Yoon et al., 2010). 
IRS-1 
PKR was found to link chronic inflammatory responses 
to metabolic signaling through the phosphorylation of 
the insulin response substrate (IRS)-1 on Ser312.  
Phosphorylation at this site inhibits the phosphorylation 
of key tyrosine residues required for insulin induced 
signaling (Nakamura et al., 2010; Yang et al., 2010a). 

Homology 
H. sapiens: (100%) 
P. troglodytes: (98%) 
C. lupus: (55%) 
B. taurus: (62%) 
M. musculus: (58%) 
R. norvegicus: (51%) 
G. gallus: (39%) 

D. rerio: (30%) 

Mutations 
Note 
Although the 2p22-p21 locus is often rearranged in 
leukemia no data supports these alterations affecting 
EIF2AK2.  
A single nucleotide mutation was documented in a 
single pediatric T-ALL patient.  
The mutation occurred in the first double-stranded 
RNA binding domain and resulted in a protein that 
could not be activated by polyI:C (Murad et al., 2005). 
In a murine model of chronic lymphocytic leukemia 
(CLL), a rearrangement in one locus of EIF2AK2 
results in the deletion of 550 nucleotides and the 
production of a truncated protein with dominant-
negative activity (Abraham et al., 1998). 

Germinal 
None. 

Somatic 
- DNA: nt50 (A to G); Protein: aa17 (Tyr to Cys); 
Source: Pediatric T-ALL; Influence on pathology not 
determined. 
- DNA: nt1872 (C to G); Protein: aa439 (Leu to Val); 
Source: adenocarcinoma; Influence on pathology not 
determined.  
Single Nucleotide Polymorphisms 
SNP analysis revealed V428E (T1840A; source 
unknown), I506V (A2073G; source unknown). 
Additional polymorphisms (1084) identified in the 
genomic sequence in the locus of EIF2AK2 can be 
found at PheGenI. 
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Post-translational modification. (Taylor et al., 2001)a; (Su et al., 2006)b; (Romano et al., 1998)c; (Alisi et al., 2005)d; (Zhang et al., 
2001)e; (Olsen et al., 2010)f; (Dephoure et al., 2008)g; (CST Curation Set Data available from Phosphosite Plus at 
http://www.phosphosite.org)h; (Christensen et al., 2010)i; (Kim et al., 2011)j; (Wagner et al., 2011)k. 

 

Implicated in 
Myelodysplastic syndromes (MDS) 
Note 
The presence of phospho-T451 PKR (p-T451 PKR) is 
slightly elevated in the cytoplasm of bone-marrow 
mononuclear cells (BMMC) from low-risk/INT-1 MDS 
patients. In contrast, BMMCs from INT-2/high-risk 
MDS patients show an enhanced presence of p-T451 
PKR with primarily nuclear localization (Follo et al., 
2008).  
Inhibition of PKR kinase activity or expression 
reverses the suppressive effects of IFNγ and TNFα on 
colony formation from CD34+ hematopoietic 
progenitors and increases hematopoietic colony 
formation from human isolated MDS progenitors 
(Sharma et al., 2011). 
Loss of PKR expression is observed in 5q- and 5q:31-
33 myelodysplasias (Green et al., 1999; Giagounidis et 
al., 2004). 

Disease 
Bone marrow failure disorder. 

Prognosis 
The presence of p-T451 PKR in the cytoplasm is 
associated with low-risk disease. 
The presence of p-T451 PKR in the nucleus is 
associated with high-risk disease and thus an enhanced 
probability of progression to acute myelogenous 
leukemia (AML). 
Loss of PKR in 5q- and 5q32-33 myelodysplasias is  

associated with low-risk disease, while loss of PKR in 
5q31 myelodysplasias with complex cytogenetics is 
associated with high-risk disease. 

Oncogenesis 
Progression to acute myelogenous leukemia. 

Fanconi anemia (FA) 
Note 
PKR activity is constitutively elevated in bone marrow 
cells from Fanconi anemia patients and cells lines and 
contributes to the hypersensitivity of these cells to 
TNFα and IFNγ (Pang et al., 2001; Zhang et al., 2004).  
Inhibition of PKR activity by either expressing a 
dominant negative PKR kinase or a dominant-negative 
form of the cellular PKR activator RAX/PACT (S18A) 
reduces apoptosis and sensitivity to TNFα and IFNγ 
(Pang et al., 2001; Bennett et al., 2006). 

Disease 
Bone marrow failure disorder. 

Prognosis 
Unknown. 

Oncogenesis 
Progression to acute myelogenous leukemia. 

Acute myelogenous leukemia (AML) 
Note 
PKR is overexpressed in blasts from AML patients, and 
is a functional kinase (Basu et al., 1997). AML derived 
cell lines contain elevated levels of p-T451 PKR as 
compared to control peripheral blood lymphocytes 
(Blalock et al., 2009).  
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AML cell lines were highly dependent on PKR activity 
for cell maintenance as treatment of the cells with the 
commercial PKR inhibitor resulted in cell cycle arrest 
and cell death (Blalock et al., 2009). 

Disease 
Cancer; myelo-/monocytic leukemia. 

Prognosis 
Unknown. 

Oncogenesis 
Contributes to cancer cell maintenance. 

Acute lymphocytic leukemia (ALL) 
Note 
PKR is overexpressed in blasts from ALL patients, and 
is a functional kinase (Basu et al., 1997).  
T-ALL derived cell lines contain elevated levels of p-
T451 PKR as compared to control peripheral blood 
lymphocytes (Blalock et al., 2009).  
T-ALL cell lines were highly dependent on PKR 
activity for cell maintenance as treatment of the cells 
with the commercial PKR inhibitor resulted in cell 
cycle arrest (Blalock et al., 2009).  
A somatic point mutation was detected in the coding 
region of dsRNA-binding domain I (coding nucleotide 
50 (A to G); amino acid Y17C) of PKR in a patient 
with T-ALL.  
Although activation of the mutant PKR kinase by 
polyI:C was impaired, the exact role of this mutation in 
the T-ALL was not determined (Murad et al., 2005). 

Disease 
Cancer; T-cell derived lymphoblastic leukemia. 

Prognosis 
Unknown. 

Cytogenetics 
Somatic point mutation in the coding region of dsRNA-
binding domain I (coding nucleotide 50 (A to G); 
amino acid Y17C); Source: T-ALL. 

Oncogenesis 
Contributes to cancer cell maintenance. 

Chronic lymphocytic leukemia (CLL) 
Note 
PKR mRNA is underexpressed in CLL as compared to 
controls, and the kinase is inactive due to the presence 
of a soluble cellular inhibitor (Basu et al., 1997; Hii et 
al., 2004). 

Disease 
Cancer; B-cell lymphocytic leukemia. 

Prognosis 
Unknown. 

Lung carcinoma 
Note 
Elevated phospho-T446 PKR and/or p-S51 eIF2α were 
associated with longer median survival in patients with 
non-small cell lung cancer (NSCLC). Combinations of 

p-PKR/PKR expression or p-eIF2α/PKR expression 
were valuable prognostic markers for survival (Pataer 
et al., 2010; He et al., 2011). Lower levels of PKR 
expression though correlated with aggressive tumor 
behavior, increased lymph node metastasis and shorter 
survival in the patients (Pataer et al., 2010). 
In contrast to NSCLC, a high level of PKR expression 
was associated with shorter overall survival in patients 
with small-size lung adenocarcinomas (Roh et al., 
2005). 

Disease 
Cancer; Non-small cell lung cancer (NSCLC) and 
small cell adenocarcinoma of the lung. 

Prognosis 
PKR expression and activation as determined by 
immunocytochemistry (p-T446 PKR) are associated 
with a positive prognosis in NSCLC. 
PKR expression in small-size lung adenocarcinomas is 
associated with a poor prognosis. 

Oncogenesis 
Low levels of PKR expression favor aggressive 
behavior and metastasis in NSCLC. 

Breast carcinoma 
Note 
Breast carcinoma cells contain elevated PKR protein 
and activity (7-40 fold) as compared to controls (Kim 
et al., 2000; Nussbaum et al., 2003). Stimulation of the 
PKR promoter ISRE is responsible for enhanced PKR 
expression (Nussbaum et al., 2003). 
Elevated PKR activity is further linked to macrophage-
migration inhibitory factor (MIF) expression which 
favors breast cancer cell growth, but also sensitizes 
breast cancer cells to PKR-mediated killing as the 
system is already primed (Armstrong et al., 2008; 
Pervin et al., 2008). 
PKR may assist in the therapeutic response of 
5'Florourocil (5'FU) in p53-null breast cancer (Garcia 
et al., 2011). 

Disease 
Cancer; breast. 

Prognosis 
Unknown. 

Oncogenesis 
Activated PKR may promote growth of breast 
carcinoma cells. 

Colon carcinoma 
Note 
Elevated PKR expression and activity are associated 
with progressive transformation from normal mucosa to 
adenoma and colon carcinoma (Kim et al., 2002). 
The activation state of PKR also influences the drug 
sensitivity of colon cancer cells (Yoon et al., 2009; 
Yang et al., 2010b; Garcia et al., 2011). 

Disease 
Cancer; colon adenoma and colon carcinoma. 
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Prognosis 
Unknown; associated with progressive transformation 
and drug-sensitivity. 

Oncogenesis 
Progressive transformation to adenomas or carcinomas. 

Melanoma 
Note 
Melanomas contain elevated levels of PKR protein, p-
S51 eIF2α and PKR activity as compared to controls 
(Kim et al., 2002).  
PKR was highly expressed in melanoma lymph node 
metastasis (Kim et al., 2002).  
Knock-down of PKR mRNA and protein in B16-F10 
melanoma tumor cells using shRNA led to decreased 
metastatic nodes in mice (Delgado Andre and De 
Lucca, 2007). 

Disease 
Cancer; skin (melanoma). 

Prognosis 
Elevated PKR activity associated with disease 
progression and metastasis. 

Oncogenesis 
Elevated PKR expression and activity are associated 
with metastasis. 

Thyroid cancer 
Note 
PKR is overexpressed in 90% of thyroid cancers, and 
its expression is higher in papillary versus nonpapillary 
carcinoma.  
Elevated PKR expression was associated with vascular 
invasion and satellite tumor nodules. PKR expression 
was linked to a low proliferative activity of the tumor 
(Terada et al., 2000a). 

Disease 
Cancer; thyroid. 

Prognosis 
Unknown. 

Oncogenesis 
Increased invasiveness and satellite tumor formation. 

Pancreatic cancer 
Note 
PKR is upregulated during interferon treatment of 
pancreatic cancer where lower PKR expression 
predicted a shorter anti-cancer response and length of 
survival following IFN treatment (Zhou et al., 1998). 

Disease 
Cancer; neuroendocrine. 

Prognosis 
Enhanced expression is associated with a favorable 
outcome to interferon therapy. Could represent a 
prognostic indicator. 

Oncogenesis 
Role uncharacterized. 

Gastric cancer 
Note 
Levels of phosphorylated forms of PKR and eIF2α 
were elevated in the rectus abdominus muscle of 
oesophago-gastric cancer patients as compared to 
control (Eley et al., 2008). 

Disease 
Cancer-related cachexia. 

Prognosis 
Poor; Phospho-PKR and Phospho-eIF2α are associated 
with muscle wasting. 

Rectal carcinoma 
Note 
PKR protein expression is associated with smaller sized 
tumors, a lower relapse rate and greater 5-year disease-
free and overall survival (Kwon et al., 2005). 

Disease 
Cancer; lymph node negative rectal carcinoma. 

Prognosis 
Favorable; PKR expression is associated with a lower 
relapse rate and higher disease free and overall 
survival. 

Oncogenesis 
Role uncharacterized. 

Hepatocellular carcinoma (HCC) 
Note 
PKR mRNA and protein are overexpressed and PKR 
kinase activity enhanced in hepatocellular carcinoma 
(Hiasa et al., 2003; Alisi et al., 2005). PKR protein 
levels were observed to increase in bile duct tissue 
during progression to carcinoma, and this increase was 
associated with duct inflammation and duct cell 
proliferation (Terada et al., 2000b).  
Increased PKR expression was associated with both 
chronic hepatitis and HCC (Shimada et al., 1998). 
Importantly, elevated PKR expression is associated 
with better differentiated HCC and cholangiocarcinoma 
(Shimada et al., 1998; Terada et al., 2000b). 
The core protein of hepatitis C virus (HCV), a major 
contributor to HCC, was seen to bind to and activate 
PKR (pT446) in HCC cells and tissue (Delhem et al., 
2001; Alisi et al., 2005).  
In contrast, hepatitis B virus infected HCC liver tissue 
showed decreased PKR expression as determined by 
real-time PCR and immunohistochemistry and no 
association between the status of tumor differentiation 
was observed (Chen et al., 2004). 

Disease 
Cancer; hepatocellular carcinoma (HCC) HCV-
associated HCC, HBV-associated HCC. 

Oncogenesis 
Expression increases with progression toward HCC but 
is associated with better differentiated tumors (except 
in HBV-associated HCC). 
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Alzheimer's disease 
Note 
Phospho-PKR accumulates in the nuclei of AD brain 
tissue (Onuki et al., 2004).  
Neurons from AD patient brains contain elevated levels 
of p-T446 and/or T451 PKR, and p-S51 eIF2α (Peel 
and Bredesen, 2003; Suen et al., 2003) and treatment of 
cell lines with Aβ peptide results in PKR activation, 
eIF2α phosphorylation and the co-localization of p-
PKR with Redd1 and FADD in the nucleus (Suen et al., 
2003; Morel et al., 2009b; Couturier et al., 2010a). 
Phospho-PKR is associated with phospho-Tau and 
phospho-p38 in AD brain (Peel and Bredesen, 2003).  
Inhibition of PKR attenuates inflammation as well as 
TNFα, IL-1α, IL-1β, IL-6 expression and apoptosis 
stimulated by Aβ peptide (Couturier et al., 2010b; 
Couturier et al., 2011). 
Elevated levels of p-PKR, p-eIF2α and secretion of 
TNFα, IL-1α, IL-1β and IL-6 are observed in peripheral 
blood mononuclear cells from AD patients (Morel et 
al., 2009a; Couturier et al., 2010b). 

Disease 
Neurodegenerative. 

Prognosis 
The presence of elevated p-PKR in brain neuronal 
tissue is an indicator of cellular stress and degeneration. 
Possible disease indicator. 
An EIF2AK2 SNP (C/T; rs2254958) at position 250 in 
the 5'UTR was found to be associated with Alzheimer's 
disease (Bullido et al., 2008). 

Cytogenetics 
Alzheimer's associated EIF2AK2 SNP (C/T; 
rs2254958). 

Parkinson's disease (PD) 
Note 
Hippocampal neurons from PD patients contain 
elevated levels of nuclear p-T446 PKR (Bando et al., 
2005). 

Disease 
Neurodegenerative. 

Prognosis 
Unknown. 

Huntington chorea 
Note 
PKR binds CAG repeats in mutated Huntington 
transcripts.  
Affected Huntington tissues contain elevated levels of 
p-PKR (active) with a particular increase in the nuclei 
of hippocampal neurons (Peel et al., 2001; Bando et al., 
2005). 

Disease 
Neurodegenerative. 

Prognosis 
Unknown. 

Creutzfeldt-Jakob disease (CJD) 
Note 
Neuronal tissue (frontal, occipital, temporal cortex, 
striatum and cerebellum) from CJD patients contained 
elevated levels of p-T451 PKR localized exclusively to 
the nucleus.  
The levels of p-T451 PKR were associated with 
apoptosis, spongiosis, astrocytosis and disease severity 
(Paquet et al., 2009). 

Disease 
Neurodegenerative. 

Prognosis 
The levels of p-T451 PKR are associated with disease 
severity in CJD patients. 

Amyotrophic lateral sclerosis (ALS) 
Note 
The presence of p-T451 PKR increases in spinal cord 
tissue from ALS patients 2600% (cytosolic) and 3300% 
(particulate) as compared to controls (Hu et al., 2003). 

Disease 
Neurodegenerative. 

Prognosis 
Unknown. 

References 
Roberts WK, Hovanessian A, Brown RE, Clemens MJ, Kerr IM. 
Interferon-mediated protein kinase and low-molecular-weight 
inhibitor of protein synthesis. Nature. 1976a Dec 
2;264(5585):477-80 

Roberts WK, Clemens MJ, Kerr IM. Interferon-induced 
inhibition of protein synthesis in L-cell extracts: an ATP-
dependent step in the activation of an inhibitor by double-
stranded RNA. Proc Natl Acad Sci U S A. 1976b 
Sep;73(9):3136-40 

Colthurst DR, Campbell DG, Proud CG. Structure and 
regulation of eukaryotic initiation factor eIF-2. Sequence of the 
site in the alpha subunit phosphorylated by the haem-
controlled repressor and by the double-stranded RNA-
activated inhibitor. Eur J Biochem. 1987 Jul 15;166(2):357-63 

Kuhen KL, Shen X, Carlisle ER, Richardson AL, Weier HU, 
Tanaka H, Samuel CE. Structural organization of the human 
gene (PKR) encoding an interferon-inducible RNA-dependent 
protein kinase (PKR) and differences from its mouse homolog. 
Genomics. 1996 Aug 15;36(1):197-201 

Basu S, Panayiotidis P, Hart SM, He LZ, Man A, Hoffbrand AV, 
Ganeshaguru K. Role of double-stranded RNA-activated 
protein kinase in human hematological malignancies. Cancer 
Res. 1997 Mar 1;57(5):943-7 

Kuhen KL, Samuel CE. Isolation of the interferon-inducible 
RNA-dependent protein kinase Pkr promoter and identification 
of a novel DNA element within the 5'-flanking region of human 
and mouse Pkr genes. Virology. 1997 Jan 6;227(1):119-30 

Sakaguchi K, Sakamoto H, Lewis MS, Anderson CW, Erickson 
JW, Appella E, Xie D. Phosphorylation of serine 392 stabilizes 
the tetramer formation of tumor suppressor protein p53. 
Biochemistry. 1997 Aug 19;36(33):10117-24 

Wong AH, Tam NW, Yang YL, Cuddihy AR, Li S, Kirchhoff S, 
Hauser H, Decker T, Koromilas AE. Physical association 



EIF2AK2 (eukaryotic translation initiation factor 2-alpha kinase 2) Blalock WL, Cocco L 
 
 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2012; 16(9)  610 

between STAT1 and the interferon-inducible protein kinase 
PKR and implications for interferon and double-stranded RNA 
signaling pathways. EMBO J. 1997 Mar 17;16(6):1291-304 

Abraham N, Jaramillo ML, Duncan PI, Méthot N, Icely PL, 
Stojdl DF, Barber GN, Bell JC. The murine PKR tumor 
suppressor gene is rearranged in a lymphocytic leukemia. Exp 
Cell Res. 1998 Nov 1;244(2):394-404 

Kimball SR, Fabian JR, Pavitt GD, Hinnebusch AG, Jefferson 
LS. Regulation of guanine nucleotide exchange through 
phosphorylation of eukaryotic initiation factor eIF2alpha. Role 
of the alpha- and delta-subunits of eiF2b. J Biol Chem. 1998 
May 22;273(21):12841-5 

Kuhen KL, Vessey JW, Samuel CE. Mechanism of interferon 
action: identification of essential positions within the novel 15-
base-pair KCS element required for transcriptional activation of 
the RNA-dependent protein kinase pkr gene. J Virol. 1998 
Dec;72(12):9934-9 

Romano PR, Garcia-Barrio MT, Zhang X, Wang Q, Taylor DR, 
Zhang F, Herring C, Mathews MB, Qin J, Hinnebusch AG. 
Autophosphorylation in the activation loop is required for full 
kinase activity in vivo of human and yeast eukaryotic initiation 
factor 2alpha kinases PKR and GCN2. Mol Cell Biol. 1998 
Apr;18(4):2282-97 

Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, Wek RC. 
Identification and characterization of pancreatic eukaryotic 
initiation factor 2 alpha-subunit kinase, PEK, involved in 
translational control. Mol Cell Biol. 1998 Dec;18(12):7499-509 

Shimada A, Shiota G, Miyata H, Kamahora T, Kawasaki H, 
Shiraki K, Hino S, Terada T. Aberrant expression of double-
stranded RNA-dependent protein kinase in hepatocytes of 
chronic hepatitis and differentiated hepatocellular carcinoma. 
Cancer Res. 1998 Oct 1;58(19):4434-8 

Zhou Y, Gobl A, Wang S, Jacobsen MB, Janson ET, Haines 
GK 3rd, Radosevich JA, Oberg K. Expression of p68 protein 
kinase and its prognostic significance during IFN-alpha therapy 
in patients with carcinoid tumours. Eur J Cancer. 1998 
Dec;34(13):2046-52 

Berlanga JJ, Santoyo J, De Haro C. Characterization of a 
mammalian homolog of the GCN2 eukaryotic initiation factor 
2alpha kinase. Eur J Biochem. 1999 Oct;265(2):754-62 

Cuddihy AR, Wong AH, Tam NW, Li S, Koromilas AE. The 
double-stranded RNA activated protein kinase PKR physically 
associates with the tumor suppressor p53 protein and 
phosphorylates human p53 on serine 392 in vitro. Oncogene. 
1999 Apr 29;18(17):2690-702 

Green WB, Slovak ML, Chen IM, Pallavicini M, Hecht JL, 
Willman CL. Lack of IRF-1 expression in acute promyelocytic 
leukemia and in a subset of acute myeloid leukemias with 
del(5)(q31). Leukemia. 1999 Dec;13(12):1960-71 

Kawakubo K, Kuhen KL, Vessey JW, George CX, Samuel CE. 
Alternative splice variants of the human PKR protein kinase 
possessing different 5'-untranslated regions: expression in 
untreated and interferon-treated cells and translational activity. 
Virology. 1999 Nov 10;264(1):106-14 

Kuhen KL, Samuel CE. Mechanism of interferon action: 
functional characterization of positive and negative regulatory 
domains that modulate transcriptional activation of the human 
RNA-dependent protein kinase Pkr promoter. Virology. 1999 
Feb 1;254(1):182-95 

Lu J, O'Hara EB, Trieselmann BA, Romano PR, Dever TE. The 
interferon-induced double-stranded RNA-activated protein 
kinase PKR will phosphorylate serine, threonine, or tyrosine at 
residue 51 in eukaryotic initiation factor 2alpha. J Biol Chem. 
1999 Nov 5;274(45):32198-203 

Williams BR. PKR; a sentinel kinase for cellular stress. 
Oncogene. 1999 Nov 1;18(45):6112-20 

Bonnet MC, Weil R, Dam E, Hovanessian AG, Meurs EF. PKR 
stimulates NF-kappaB irrespective of its kinase function by 
interacting with the IkappaB kinase complex. Mol Cell Biol. 
2000 Jul;20(13):4532-42 

Gil J, Alcamí J, Esteban M. Activation of NF-kappa B by the 
dsRNA-dependent protein kinase, PKR involves the I kappa B 
kinase complex. Oncogene. 2000 Mar 9;19(11):1369-78 

Kim SH, Forman AP, Mathews MB, Gunnery S. Human breast 
cancer cells contain elevated levels and activity of the protein 
kinase, PKR. Oncogene. 2000 Jun 22;19(27):3086-94 

Ramana CV, Grammatikakis N, Chernov M, Nguyen H, Goh 
KC, Williams BR, Stark GR. Regulation of c-myc expression by 
IFN-gamma through Stat1-dependent and -independent 
pathways. EMBO J. 2000 Jan 17;19(2):263-72 

Sudhakar A, Ramachandran A, Ghosh S, Hasnain SE, 
Kaufman RJ, Ramaiah KV. Phosphorylation of serine 51 in 
initiation factor 2 alpha (eIF2 alpha) promotes complex 
formation between eIF2 alpha(P) and eIF2B and causes 
inhibition in the guanine nucleotide exchange activity of eIF2B. 
Biochemistry. 2000 Oct 24;39(42):12929-38 

Terada T, Maeta H, Endo K, Ohta T. Protein expression of 
double-stranded RNA-activated protein kinase in thyroid 
carcinomas: correlations with histologic types, pathologic 
parameters, and Ki-67 labeling. Hum Pathol. 2000a 
Jul;31(7):817-21 

Terada T, Ueyama J, Ukita Y, Ohta T. Protein expression of 
double-stranded RNA-activated protein kinase (PKR) in 
intrahepatic bile ducts in normal adult livers, fetal livers, 
primary biliary cirrhosis, hepatolithiasis and intrahepatic 
cholangiocarcinoma. Liver. 2000b Dec;20(6):450-7 

Xu Z, Williams BR. The B56alpha regulatory subunit of protein 
phosphatase 2A is a target for regulation by double-stranded 
RNA-dependent protein kinase PKR. Mol Cell Biol. 2000 
Jul;20(14):5285-99 

Zamanian-Daryoush M, Mogensen TH, DiDonato JA, Williams 
BR. NF-kappaB activation by double-stranded-RNA-activated 
protein kinase (PKR) is mediated through NF-kappaB-inducing 
kinase and IkappaB kinase. Mol Cell Biol. 2000 
Feb;20(4):1278-90 

Deb A, Zamanian-Daryoush M, Xu Z, Kadereit S, Williams BR. 
Protein kinase PKR is required for platelet-derived growth 
factor signaling of c-fos gene expression via Erks and Stat3. 
EMBO J. 2001 May 15;20(10):2487-96 

Delhem N, Sabile A, Gajardo R, Podevin P, Abadie A, Blaton 
MA, Kremsdorf D, Beretta L, Brechot C. Activation of the 
interferon-inducible protein kinase PKR by hepatocellular 
carcinoma derived-hepatitis C virus core protein. Oncogene. 
2001 Sep 13;20(41):5836-45 

Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H, 
Goodman R, Lozano G, Zhao Y, Lu H. A DNA damage-
induced p53 serine 392 kinase complex contains CK2, hSpt16, 
and SSRP1. Mol Cell. 2001 Feb;7(2):283-92 

Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE, Hinnebusch 
AG. Tight binding of the phosphorylated alpha subunit of 
initiation factor 2 (eIF2alpha) to the regulatory subunits of 
guanine nucleotide exchange factor eIF2B is required for 
inhibition of translation initiation. Mol Cell Biol. 2001 
Aug;21(15):5018-30 

Nika J, Rippel S, Hannig EM. Biochemical analysis of the 
eIF2beta gamma complex reveals a structural function for 
eIF2alpha in catalyzed nucleotide exchange. J Biol Chem. 
2001 Jan 12;276(2):1051-6 



EIF2AK2 (eukaryotic translation initiation factor 2-alpha kinase 2) Blalock WL, Cocco L 
 
 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2012; 16(9)  611 

Pang Q, Keeble W, Diaz J, Christianson TA, Fagerlie S, 
Rathbun K, Faulkner GR, O'Dwyer M, Bagby GC Jr. Role of 
double-stranded RNA-dependent protein kinase in mediating 
hypersensitivity of Fanconi anemia complementation group C 
cells to interferon gamma, tumor necrosis factor-alpha, and 
double-stranded RNA. Blood. 2001 Mar 15;97(6):1644-52 

Peel AL, Rao RV, Cottrell BA, Hayden MR, Ellerby LM, 
Bredesen DE. Double-stranded RNA-dependent protein 
kinase, PKR, binds preferentially to Huntington's disease (HD) 
transcripts and is activated in HD tissue. Hum Mol Genet. 2001 
Jul 15;10(15):1531-8 

Taylor DR, Tian B, Romano PR, Hinnebusch AG, Lai MM, 
Mathews MB. Hepatitis C virus envelope protein E2 does not 
inhibit PKR by simple competition with autophosphorylation 
sites in the RNA-binding domain. J Virol. 2001 Feb;75(3):1265-
73 

Zhang F, Romano PR, Nagamura-Inoue T, Tian B, Dever TE, 
Mathews MB, Ozato K, Hinnebusch AG. Binding of double-
stranded RNA to protein kinase PKR is required for 
dimerization and promotes critical autophosphorylation events 
in the activation loop. J Biol Chem. 2001 Jul 6;276(27):24946-
58 

Fernandez J, Yaman I, Merrick WC, Koromilas A, Wek RC, 
Sood R, Hensold J, Hatzoglou M. Regulation of internal 
ribosome entry site-mediated translation by eukaryotic initiation 
factor-2alpha phosphorylation and translation of a small 
upstream open reading frame. J Biol Chem. 2002 Jan 
18;277(3):2050-8 

Gerlitz G, Jagus R, Elroy-Stein O. Phosphorylation of initiation 
factor-2 alpha is required for activation of internal translation 
initiation during cell differentiation. Eur J Biochem. 2002 
Jun;269(11):2810-9 

Kim SH, Gunnery S, Choe JK, Mathews MB. Neoplastic 
progression in melanoma and colon cancer is associated with 
increased expression and activity of the interferon-inducible 
protein kinase, PKR. Oncogene. 2002 Dec 12;21(57):8741-8 

Ward SV, Samuel CE. Regulation of the interferon-inducible 
PKR kinase gene: the KCS element is a constitutive promoter 
element that functions in concert with the interferon-stimulated 
response element. Virology. 2002 Apr 25;296(1):136-46 

Hiasa Y, Kamegaya Y, Nuriya H, Onji M, Kohara M, Schmidt 
EV, Chung RT. Protein kinase R is increased and is functional 
in hepatitis C virus-related hepatocellular carcinoma. Am J 
Gastroenterol. 2003 Nov;98(11):2528-34 

Hu JH, Zhang H, Wagey R, Krieger C, Pelech SL. Protein 
kinase and protein phosphatase expression in amyotrophic 
lateral sclerosis spinal cord. J Neurochem. 2003 
Apr;85(2):432-42 

Nussbaum JM, Major M, Gunnery S. Transcriptional 
upregulation of interferon-induced protein kinase, PKR, in 
breast cancer. Cancer Lett. 2003 Jul 10;196(2):207-16 

Peel AL, Bredesen DE. Activation of the cell stress kinase PKR 
in Alzheimer's disease and human amyloid precursor protein 
transgenic mice. Neurobiol Dis. 2003 Oct;14(1):52-62 

Suen KC, Yu MS, So KF, Chang RC, Hugon J. Upstream 
signaling pathways leading to the activation of double-stranded 
RNA-dependent serine/threonine protein kinase in beta-
amyloid peptide neurotoxicity. J Biol Chem. 2003 Dec 
12;278(50):49819-27 

Ward SV, Samuel CE. The PKR kinase promoter binds both 
Sp1 and Sp3, but only Sp3 functions as part of the interferon-
inducible complex with ISGF-3 proteins. Virology. 2003 Sep 
1;313(2):553-66 

Yaman I, Fernandez J, Liu H, Caprara M, Komar AA, 
Koromilas AE, Zhou L, Snider MD, Scheuner D, Kaufman RJ, 
Hatzoglou M. The zipper model of translational control: a small 
upstream ORF is the switch that controls structural remodeling 
of an mRNA leader. Cell. 2003 May 16;113(4):519-31 

Chen GG, Lai PB, Ho RL, Chan PK, Xu H, Wong J, Lau WY. 
Reduction of double-stranded RNA-activated protein kinase in 
hepatocellular carcinoma associated with hepatitis B virus. J 
Med Virol. 2004 Jun;73(2):187-94 

Donzé O, Deng J, Curran J, Sladek R, Picard D, Sonenberg N. 
The protein kinase PKR: a molecular clock that sequentially 
activates survival and death programs. EMBO J. 2004 Feb 
11;23(3):564-71 

Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse 
LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, 
Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, 
Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, 
Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, 
Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro 
N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, 
Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, 
Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, 
Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, 
Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei 
CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, 
Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, 
McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, 
Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, 
Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, 
Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson 
MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, 
Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, 
Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, 
Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross 
A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J. The 
status, quality, and expansion of the NIH full-length cDNA 
project: the Mammalian Gene Collection (MGC). Genome Res. 
2004 Oct;14(10B):2121-7 

Giagounidis AA, Germing U, Haase S, Hildebrandt B, 
Schlegelberger B, Schoch C, Wilkens L, Heinsch M, Willems 
H, Aivado M, Aul C. Clinical, morphological, cytogenetic, and 
prognostic features of patients with myelodysplastic syndromes 
and del(5q) including band q31. Leukemia. 2004 
Jan;18(1):113-9 

Hii SI, Hardy L, Crough T, Payne EJ, Grimmett K, Gill D, 
McMillan NA. Loss of PKR activity in chronic lymphocytic 
leukemia. Int J Cancer. 2004 Apr 10;109(3):329-35 

Onuki R, Bando Y, Suyama E, Katayama T, Kawasaki H, Baba 
T, Tohyama M, Taira K. An RNA-dependent protein kinase is 
involved in tunicamycin-induced apoptosis and Alzheimer's 
disease. EMBO J. 2004 Feb 25;23(4):959-68 

Peel AL. PKR activation in neurodegenerative disease. J 
Neuropathol Exp Neurol. 2004 Feb;63(2):97-105 

Zhang X, Li J, Sejas DP, Rathbun KR, Bagby GC, Pang Q. 
The Fanconi anemia proteins functionally interact with the 
protein kinase regulated by RNA (PKR). J Biol Chem. 2004 Oct 
15;279(42):43910-9 

Alisi A, Mele R, Spaziani A, Tavolaro S, Palescandolo E, 
Balsano C. Thr 446 phosphorylation of PKR by HCV core 
protein deregulates G2/M phase in HCC cells. J Cell Physiol. 
2005 Oct;205(1):25-31 

Bando Y, Onuki R, Katayama T, Manabe T, Kudo T, Taira K, 
Tohyama M. Double-strand RNA dependent protein kinase 
(PKR) is involved in the extrastriatal degeneration in 
Parkinson's disease and Huntington's disease. Neurochem Int. 
2005 Jan;46(1):11-8 



EIF2AK2 (eukaryotic translation initiation factor 2-alpha kinase 2) Blalock WL, Cocco L 
 
 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2012; 16(9)  612 

Kwon HC, Moon CH, Kim SH, Choi HJ, Lee HS, Roh MS, 
Hwang TH, Kim JS, Kim HJ. Expression of double-stranded 
RNA-activated protein kinase (PKR) and its prognostic 
significance in lymph node negative rectal cancer. Jpn J Clin 
Oncol. 2005 Sep;35(9):545-50 

Murad JM, Tone LG, de Souza LR, De Lucca FL. A point 
mutation in the RNA-binding domain I results in decrease of 
PKR activation in acute lymphoblastic leukemia. Blood Cells 
Mol Dis. 2005 Jan-Feb;34(1):1-5 

Roh MS, Kwak JY, Kim SJ, Lee HW, Kwon HC, Hwang TH, 
Choi PJ, Hong YS. Expression of double-stranded RNA-
activated protein kinase in small-size peripheral 
adenocarcinoma of the lung. Pathol Int. 2005 Nov;55(11):688-
93 

Bennett RL, Blalock WL, Abtahi DM, Pan Y, Moyer SA, May 
WS. RAX, the PKR activator, sensitizes cells to inflammatory 
cytokines, serum withdrawal, chemotherapy, and viral 
infection. Blood. 2006 Aug 1;108(3):821-9 

Bonnet MC, Daurat C, Ottone C, Meurs EF. The N-terminus of 
PKR is responsible for the activation of the NF-kappaB 
signaling pathway by interacting with the IKK complex. Cell 
Signal. 2006 Nov;18(11):1865-75 

García MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, 
Esteban M. Impact of protein kinase PKR in cell biology: from 
antiviral to antiproliferative action. Microbiol Mol Biol Rev. 2006 
Dec;70(4):1032-60 

Su Q, Wang S, Baltzis D, Qu LK, Wong AH, Koromilas AE. 
Tyrosine phosphorylation acts as a molecular switch to full-
scale activation of the eIF2alpha RNA-dependent protein 
kinase. Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):63-8 

Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 
kinases and translational control. Biochem Soc Trans. 2006 
Feb;34(Pt 1):7-11 

Chen JJ. Regulation of protein synthesis by the heme-
regulated eIF2alpha kinase: relevance to anemias. Blood. 
2007 Apr 1;109(7):2693-9 

Delgado André N, De Lucca FL. Knockdown of PKR 
expression by RNAi reduces pulmonary metastatic potential of 
B16-F10 melanoma cells in mice: possible role of NF-kappaB. 
Cancer Lett. 2007 Dec 8;258(1):118-25 

Kårehed K, Dimberg A, Dahl S, Nilsson K, Oberg F. IFN-
gamma-induced upregulation of Fcgamma-receptor-I during 
activation of monocytic cells requires the PKR and NFkappaB 
pathways. Mol Immunol. 2007 Jan;44(4):615-24 

Koschmieder S, D'Alò F, Radomska H, Schöneich C, Chang 
JS, Konopleva M, Kobayashi S, Levantini E, Suh N, Di Ruscio 
A, Voso MT, Watt JC, Santhanam R, Sargin B, Kantarjian H, 
Andreeff M, Sporn MB, Perrotti D, Berdel WE, Müller-Tidow C, 
Serve H, Tenen DG. CDDO induces granulocytic differentiation 
of myeloid leukemic blasts through translational up-regulation 
of p42 CCAAT enhancer binding protein alpha. Blood. 2007 
Nov 15;110(10):3695-705 

Su Q, Wang S, Baltzis D, Qu LK, Raven JF, Li S, Wong AH, 
Koromilas AE. Interferons induce tyrosine phosphorylation of 
the eIF2alpha kinase PKR through activation of Jak1 and Tyk2. 
EMBO Rep. 2007 Mar;8(3):265-70 

van den Beucken T, Magagnin MG, Savelkouls K, Lambin P, 
Koritzinsky M, Wouters BG. Regulation of Cited2 expression 
provides a functional link between translational and 
transcriptional responses during hypoxia. Radiother Oncol. 
2007 Jun;83(3):346-52 

Armstrong ME, Gantier M, Li L, Chung WY, McCann A, Baugh 
JA, Donnelly SC. Small interfering RNAs induce macrophage 
migration inhibitory factor production and proliferation in breast 

cancer cells via a double-stranded RNA-dependent protein 
kinase-dependent mechanism. J Immunol. 2008 Jun 
1;180(11):7125-33 

Bullido MJ, Martínez-García A, Tenorio R, Sastre I, Muñoz DG, 
Frank A, Valdivieso F. Double stranded RNA activated EIF2 
alpha kinase (EIF2AK2; PKR) is associated with Alzheimer's 
disease. Neurobiol Aging. 2008 Aug;29(8):1160-6 

Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalarski CE, 
Elledge SJ, Gygi SP. A quantitative atlas of mitotic 
phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 
5;105(31):10762-7 

Eley HL, Skipworth RJ, Deans DA, Fearon KC, Tisdale MJ. 
Increased expression of phosphorylated forms of RNA-
dependent protein kinase and eukaryotic initiation factor 
2alpha may signal skeletal muscle atrophy in weight-losing 
cancer patients. Br J Cancer. 2008 Jan 29;98(2):443-9 

Follo MY, Finelli C, Mongiorgi S, Clissa C, Bosi C, Martinelli G, 
Blalock WL, Cocco L, Martelli AM. PKR is activated in MDS 
patients and its subcellular localization depends on disease 
severity. Leukemia. 2008 Dec;22(12):2267-9 

Pervin S, Tran AH, Zekavati S, Fukuto JM, Singh R, Chaudhuri 
G. Increased susceptibility of breast cancer cells to stress 
mediated inhibition of protein synthesis. Cancer Res. 2008 Jun 
15;68(12):4862-74 

Ruvolo VR, Kurinna SM, Karanjeet KB, Schuster TF, Martelli 
AM, McCubrey JA, Ruvolo PP. PKR regulates B56(alpha)-
mediated BCL2 phosphatase activity in acute lymphoblastic 
leukemia-derived REH cells. J Biol Chem. 2008 Dec 
19;283(51):35474-85 

Blalock WL, Grimaldi C, Fala F, Follo M, Horn S, Basecke J, 
Martinelli G, Cocco L, Martelli AM. PKR activity is required for 
acute leukemic cell maintenance and growth: a role for PKR-
mediated phosphatase activity to regulate GSK-3 
phosphorylation. J Cell Physiol. 2009 Oct;221(1):232-41 

Eley HL, McDonald PS, Russell ST, Tisdale MJ. Inhibition of 
activation of dsRNA-dependent protein kinase and tumour 
growth inhibition. Cancer Chemother Pharmacol. 2009 
Mar;63(4):651-9 

Lee YY, Cevallos RC, Jan E. An upstream open reading frame 
regulates translation of GADD34 during cellular stresses that 
induce eIF2alpha phosphorylation. J Biol Chem. 2009 Mar 
13;284(11):6661-73 

Morel M, Couturier J, Lafay-Chebassier C, Paccalin M, Page 
G. PKR, the double stranded RNA-dependent protein kinase 
as a critical target in Alzheimer's disease. J Cell Mol Med. 
2009a Aug;13(8A):1476-88 

Morel M, Couturier J, Pontcharraud R, Gil R, Fauconneau B, 
Paccalin M, Page G. Evidence of molecular links between PKR 
and mTOR signalling pathways in Abeta neurotoxicity: role of 
p53, Redd1 and TSC2. Neurobiol Dis. 2009b Oct;36(1):151-61 

Paquet C, Bose A, Polivka M, Peoc'h K, Brouland JP, Keohane 
C, Hugon J, Gray F. Neuronal phosphorylated RNA-dependent 
protein kinase in Creutzfeldt-Jakob disease. J Neuropathol Exp 
Neurol. 2009 Feb;68(2):190-8 

Sadler AJ, Latchoumanin O, Hawkes D, Mak J, Williams BR. 
An antiviral response directed by PKR phosphorylation of the 
RNA helicase A. PLoS Pathog. 2009 Feb;5(2):e1000311 

Yoon CH, Lee ES, Lim DS, Bae YS. PKR, a p53 target gene, 
plays a crucial role in the tumor-suppressor function of p53. 
Proc Natl Acad Sci U S A. 2009 May 12;106(19):7852-7 

Christensen GL, Kelstrup CD, Lyngsø C, Sarwar U, Bøgebo R, 
Sheikh SP, Gammeltoft S, Olsen JV, Hansen JL. Quantitative 
phosphoproteomics dissection of seven-transmembrane 



EIF2AK2 (eukaryotic translation initiation factor 2-alpha kinase 2) Blalock WL, Cocco L 
 
 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2012; 16(9)  613 

receptor signaling using full and biased agonists. Mol Cell 
Proteomics. 2010 Jul;9(7):1540-53 

Couturier J, Morel M, Pontcharraud R, Gontier V, Fauconneau 
B, Paccalin M, Page G. Interaction of double-stranded RNA-
dependent protein kinase (PKR) with the death receptor 
signaling pathway in amyloid beta (Abeta)-treated cells and in 
APPSLPS1 knock-in mice. J Biol Chem. 2010a Jan 
8;285(2):1272-82 

Couturier J, Page G, Morel M, Gontier C, Claude J, 
Pontcharraud R, Fauconneau B, Paccalin M. Inhibition of 
double-stranded RNA-dependent protein kinase strongly 
decreases cytokine production and release in peripheral blood 
mononuclear cells from patients with Alzheimer's disease. J 
Alzheimers Dis. 2010b;21(4):1217-31 

Nakamura T, Furuhashi M, Li P, Cao H, Tuncman G, 
Sonenberg N, Gorgun CZ, Hotamisligil GS. Double-stranded 
RNA-dependent protein kinase links pathogen sensing with 
stress and metabolic homeostasis. Cell. 2010 Feb 
5;140(3):338-48 

Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, 
Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, 
Mann M. Quantitative phosphoproteomics reveals widespread 
full phosphorylation site occupancy during mitosis. Sci Signal. 
2010 Jan 12;3(104):ra3 

Pataer A, Raso MG, Correa AM, Behrens C, Tsuta K, Solis L, 
Fang B, Roth JA, Wistuba II, Swisher SG. Prognostic 
significance of RNA-dependent protein kinase on non-small 
cell lung cancer patients. Clin Cancer Res. 2010 Nov 
15;16(22):5522-8 

Yang X, Nath A, Opperman MJ, Chan C. The double-stranded 
RNA-dependent protein kinase differentially regulates insulin 
receptor substrates 1 and 2 in HepG2 cells. Mol Biol Cell. 
2010a Oct 1;21(19):3449-58 

Yang H, Park SH, Choi HJ, Moon Y. The integrated stress 
response-associated signals modulates intestinal tumor cell 
growth by NSAID-activated gene 1 (NAG-1/MIC-1/PTGF-beta). 
Carcinogenesis. 2010b Apr;31(4):703-11 

Yoon CH, Miah MA, Kim KP, Bae YS. New Cdc2 Tyr 4 
phosphorylation by dsRNA-activated protein kinase triggers 
Cdc2 polyubiquitination and G2 arrest under genotoxic 
stresses. EMBO Rep. 2010 May;11(5):393-9 

Couturier J, Paccalin M, Morel M, Terro F, Milin S, 
Pontcharraud R, Fauconneau B, Page G. Prevention of the β-
amyloid peptide-induced inflammatory process by inhibition of 
double-stranded RNA-dependent protein kinase in primary 
murine mixed co-cultures. J Neuroinflammation. 2011 Jun 
23;8:72 

García MA, Carrasco E, Aguilera M, Alvarez P, Rivas C, 
Campos JM, Prados JC, Calleja MA, Esteban M, Marchal JA, 
Aránega A. The chemotherapeutic drug 5-fluorouracil 
promotes PKR-mediated apoptosis in a p53-independent 
manner in colon and breast cancer cells. PLoS One. 
2011;6(8):e23887 

He Y, Correa AM, Raso MG, Hofstetter WL, Fang B, Behrens 
C, Roth JA, Zhou Y, Yu L, Wistuba II, Swisher SG, Pataer A. 
The role of PKR/eIF2α signaling pathway in prognosis of non-
small cell lung cancer. PLoS One. 2011;6(11):e24855 

Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, 
Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP. 
Systematic and quantitative assessment of the ubiquitin-
modified proteome. Mol Cell. 2011 Oct 21;44(2):325-40 

Sharma B, Altman JK, Goussetis DJ, Verma AK, Platanias LC. 
Protein kinase R as mediator of the effects of interferon (IFN) 
gamma and tumor necrosis factor (TNF) alpha on normal and 
dysplastic hematopoiesis. J Biol Chem. 2011 Aug 
5;286(31):27506-14 

Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, 
Choudhary C. A proteome-wide, quantitative survey of in vivo 
ubiquitylation sites reveals widespread regulatory roles. Mol 
Cell Proteomics. 2011 Oct;10(10):M111.013284 

Bennett RL, Pan Y, Christian J, Hui T, May WS Jr. The 
RAX/PACT-PKR stress response pathway promotes p53 
sumoylation and activation, leading to G₁ arrest. Cell Cycle. 
2012 Jan 15;11(2):407-17 

This article should be referenced as such: 

Blalock WL, Cocco L. EIF2AK2 (eukaryotic translation initiation 
factor 2-alpha kinase 2). Atlas Genet Cytogenet Oncol 
Haematol. 2012; 16(9):601-613. 


