31 research outputs found

    Globular cluster systems of early-type galaxies in low-density environments

    Get PDF
    Deep images of 10 early-type galaxies in low-density environments have been obtained with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope. The global properties of the globular cluster (GC) systems of the galaxies have been derived in order to investigate the role of the environment in galaxy formation and evolution. Using the ACS Virgo Cluster Survey as a high-density counterpart, the similarities and differences between the GC properties in high- and low-density environments are presented. We find a strong correlation of the GC mean colours and the degree of colour bimodality with the host galaxy luminosity in low-density environments, in good agreement with high-density environments. In contrast, the GC mean colours at a given host luminosity are somewhat bluer [Δ(g−z) ∼ 0.05] than those for cluster galaxies, indicating more metal poor (Δ[Fe/H] ∼ 0.10 − 0.15) and/or younger (Δage > 2 Gyr) GC systems than those in dense environments. Furthermore, with decreasing host luminosity, the colour bimodality disappears faster, when compared to galaxies in cluster environments. Our results suggest that: (1) in both high- and low-density environments, the mass of the host galaxy has the dominant effect on GC system properties; (2) the local environment has only a secondary effect on the history of GC system formation; and (3) GC formation must be governed by common physical processes across a range of environments

    The Planetary Nebula Luminosity Function at the Dawn of Gaia

    Full text link
    The [O III] 5007 Planetary Nebula Luminosity Function (PNLF) is an excellent extragalactic standard candle. In theory, the PNLF method should not work at all, since the luminosities of the brightest planetary nebulae (PNe) should be highly sensitive to the age of their host stellar population. Yet the method appears robust, as it consistently produces < 10% distances to galaxies of all Hubble types, from the earliest ellipticals to the latest-type spirals and irregulars. It is therefore uniquely suited for cross-checking the results of other techniques and finding small offsets between the Population I and Population II distance ladders. We review the calibration of the method and show that the zero points provided by Cepheids and the Tip of the Red Giant Branch are in excellent agreement. We then compare the results of the PNLF with those from Surface Brightness Fluctuation measurements, and show that, although both techniques agree in a relative sense, the latter method yields distances that are ~15% larger than those from the PNLF. We trace this discrepancy back to the calibration galaxies and argue that, due to a small systematic error associated with internal reddening, the true distance scale likely falls between the extremes of the two methods. We also demonstrate how PNLF measurements in the early-type galaxies that have hosted Type Ia supernovae can help calibrate the SN Ia maximum magnitude-rate of decline relation. Finally, we discuss how the results from space missions such as Kepler and Gaia can help our understanding of the PNLF phenomenon and improve our knowledge of the physics of local planetary nebulae.Comment: 12 pages, invited review at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective", to appear in Astrophysics and Space Scienc

    Single- and multi-walled carbon nanotubes viewed as elastic tubes with Young's moduli dependent on layer number

    Full text link
    The complete energy expression of a deformed single-walled carbon nanotube (SWNT) is derived in the continuum limit from the local density approximation model proposed by Lenosky {\it et al.} \lbrack Nature (London) {\bf 355}, 333 (1992)\rbrack and shows to be content with the classic shell theory by which the Young's modulus, the Poisson ratio and the effective wall thickness of SWNTs are obtained as Y=4.70Y=4.70TPa, ν=0.34\nu=0.34, h=0.75A˚h=0.75{\rm \AA}, respectively. The elasticity of a multi-walled carbon nanotube (MWNT) is investigated as the combination of the above SWNTs of layer distance d=3.4A˚d=3.4 {\rm \AA} and the Young's modulus of the MWNT is found to be an apparent function of the number of layers, NN, varying from 4.70TPa to 1.04TPa for N=1 to ∞\infty.Comment: 4 pages, 1 figur

    Cosmological Dynamics of Phantom Field

    Get PDF
    We study the general features of the dynamics of the phantom field in the cosmological context. In the case of inverse coshyperbolic potential, we demonstrate that the phantom field can successfully drive the observed current accelerated expansion of the universe with the equation of state parameter wϕ<−1w_{\phi} < -1. The de-Sitter universe turns out to be the late time attractor of the model. The main features of the dynamics are independent of the initial conditions and the parameters of the model. The model fits the supernova data very well, allowing for −2.4<wϕ<−1-2.4 < w_{\phi} < -1 at 95 % confidence level.Comment: Typos corrected. Some clarifications and references added. To appear in Physical Review

    Globular cluster luminosity function as distance indicator

    Full text link
    Globular clusters are among the first objects used to establish the distance scale of the Universe. In the 1970-ies it has been recognized that the differential magnitude distribution of old globular clusters is very similar in different galaxies presenting a peak at M_V ~ -7.5. This peak magnitude of the so-called Globular Cluster Luminosity Function has been then established as a secondary distance indicator. The intrinsic accuracy of the method has been estimated to be of the order of ~0.2 mag, competitive with other distance determination methods. Lately the study of the Globular Cluster Systems has been used more as a tool for galaxy formation and evolution, and less so for distance determinations. Nevertheless, the collection of homogeneous and large datasets with the ACS on board HST presented new insights on the usefulness of the Globular Cluster Luminosity Function as distance indicator. I discuss here recent results based on observational and theoretical studies, which show that this distance indicator depends on complex physics of the cluster formation and dynamical evolution, and thus can have dependencies on Hubble type, environment and dynamical history of the host galaxy. While the corrections are often relatively small, they can amount to important systematic differences that make the Globular Cluster Luminosity Function a less accurate distance indicator with respect to some other standard candles.Comment: Accepted for publication in Astrophysics and Space Science. Review paper based on the invited talk at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective", Naples, May 2011. (13 pages, 8 figures

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)

    Extended Theories of Gravity and their Cosmological and Astrophysical Applications

    Full text link
    We review Extended Theories of Gravity in metric and Palatini formalism pointing out their cosmological and astrophysical application. The aim is to propose an alternative approach to solve the puzzles connected to dark components.Comment: 44 pages, 11 figure

    Globular clusters of NGC 3115 in the near-infrared: Demonstrating the correctness of two opposing scenarios

    No full text
    We combined new near-infrared VLT/HAWK-I data of the globular clusters (GCs) in the isolated edge-on S0 galaxy NGC 3115 with optical and spectroscopic ones taken from the literature, with the aim of analyzing the multiband GC color distributions. A recent study from the SLUGGS survey has shown that the GCs in this galaxy follow a bimodal distribution of Ca II triplet indices. Thus, NGC 3115 presents a critical example of a GC system with multiple, distinct, metallicity subpopulations, and this may argue against the " projection" scenario, which posits that the ubiquitous color bimodality mainly results from nonlinearities in the color-metallicity relations. Using optical, NIR, and spectroscopic data, we found strong and consistent evidence of index bimodality, which independently confirms the metallicity bimodality in NGC 3115 GCs. At the same time, we also found evidence for some color-color nonlinearity. Taken in the broader context of previous studies, the multicolor consistency of the GC bimodality in NGC 3115 suggests that in cases where GC systems exhibit clear differences between their optical and optical-NIR color distributions (as in some giant ellipticals), the apparent inconsistencies most likely result from nonlinearities in the color-metallicity relations. \ua9 ESO, 2014.Peer reviewed: YesNRC publication: N

    Integral field observations of distant cluster galaxies

    No full text
    corecore