73 research outputs found

    Draft Genome Sequence of Vibrio coralliilyticus strain OCN008 Isolated from Kāneʻohe Bay, Hawaiʻi.

    Get PDF
    Vibrio coralliilyticus is a Gram-negative bacterium found in seawater and is associated with diseased marine organisms. Strains of V. coralliilyticus have been shown to infect coral from multiple genera. We report the draft genome sequence of V. coralliilyticus strain OCN008, the third V. coralliilyticus genome to be sequenced

    Complete Genome Sequence of Vibrio coralliilyticus Strain OCN014, Isolated from a Diseased Coral at Palmyra Atoll

    Get PDF
    Vibrio coralliilyticus is a marine gammaproteobacterium that has been implicated as an etiological agent of disease for multiple coral genera on reefs worldwide. We report the complete genome of V. coralliilyticus strain OCN014, isolated from a diseased Acropora cytherea colony off the western reef terrace of Palmyra Atoll

    Complete Genome Sequence of Pseudoalteromonas sp. Strain OCN003, Isolated from Kāneʻohe Bay, Oʻahu, Hawaii

    Get PDF
    Pseudoalteromonas sp. strain OCN003 is a marine gammaproteobacterium that was isolated from a diseased colony of the common Hawaiian reef coral, Montipora capitata, found on a reef surrounding Moku o Loʻe in Kāneʻohe Bay, Hawaii. Here, we report the complete genome of Pseudoalteromonas sp. strain OCN003

    Disease Diagnostics and Potential Coinfections by Vibrio coralliilyticus During an Ongoing Coral Disease Outbreak in Florida

    Get PDF
    A deadly coral disease outbreak has been devastating the Florida Reef Tract since 2014. This disease, stony coral tissue loss disease (SCTLD), affects at least 22 coral species causing the progressive destruction of tissue. The etiological agents responsible for SCTLD are unidentified, but pathogenic bacteria are suspected. Virulence screens of 400 isolates identified four potentially pathogenic strains of Vibrio spp. subsequently identified as V. coralliilyticus. Strains of this species are known coral pathogens; however, cultures were unable to consistently elicit tissue loss, suggesting an opportunistic role. Using an improved immunoassay, the VcpA RapidTest, a toxic zinc-metalloprotease produced by V. coralliilyticus was detected on 22.3% of diseased Montastraea cavernosa (n = 67) and 23.5% of diseased Orbicella faveolata (n = 24). VcpA+ corals had significantly higher mortality rates and faster disease progression. For VcpA– fragments, 21.6% and 33.3% of M. cavernosa and O. faveolata, respectively, died within 21 d of observation, while 100% of similarly sized VcpA+ fragments of both species died during the same period. Further physiological and genomic analysis found no apparent differences between the Atlantic V. coralliilyticus strains cultured here and pathogens from the Indo-Pacific but highlighted the diversity among strains and their immense genetic potential. In all, V. coralliilyticus may be causing coinfections that exacerbate existing SCTLD lesions, which could contribute to the intraspecific differences observed between colonies. This study describes potential coinfections contributing to SCTLD virulence as well as diagnostic tools capable of tracking the pathogen involved, which are important contributions to the management and understanding of SCTLD

    Expanding the Direct HetR Regulon in Anabaena sp. Strain PCC 7120

    Get PDF
    In response to a lack of environmental combined nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates nitrogen-fixing heterocyst cells in a periodic pattern. HetR is a transcription factor that coordinates the regulation of this developmental program. An inverted repeat-containing sequence in the hepA promoter required for proheterocyst-specific transcription was identified based on sequence similarity to a previously characterized binding site for HetR in the promoter of hetP. The binding affinity of HetR for the hepA site is roughly an order of magnitude lower than that for the hetP binding site. A BLAST search of the Anabaena genome identified 166 hepA-like sites that occur as single or tandem sites (two binding sites separated by 13 bp). The vast majority of these sites are present in predicted intergenic regions. HetR bound five representative single binding sites in vitro, and binding was abrogated by transversions in the binding sites that conserved the inverted repeat nature of the sites. Binding to four representative tandem sites was not observed. Transcriptional fusions of the green fluorescent protein gene gfp with putative promoter regions associated with the representative binding sites indicated that HetR could function as either an activator or repressor and that activation was cell-type specific. Taken together, we have expanded the direct HetR regulon and propose a model in which three categories of HetR binding sites, based on binding affinity and nucleotide sequence, contribute to three of the four phases of differentiation

    First Record of Black Band Disease in the Hawaiian Archipelago: Response, Outbreak Status, Virulence, and a Method of Treatment

    Get PDF
    A high number of coral colonies, Montipora spp., with progressive tissue loss were reported from the north shore of Kaua‘i by a member of the Eyes of the Reef volunteer reporting network. The disease has a distinct lesion (semi-circular pattern of tissue loss with an adjacent dark band) that was first observed in Hanalei Bay, Kaua‘i in 2004. The disease, initially termed Montipora banded tissue loss, appeared grossly similar to black band disease (BBD), which affects corals worldwide. Following the initial report, a rapid response was initiated as outlined in Hawai‘i’s rapid response contingency plan to determine outbreak status and investigate the disease. Our study identified the three dominant bacterial constituents indicative of BBD (filamentous cyanobacteria, sulfate-reducing bacteria, sulfide-oxidizing bacteria) in coral disease lesions from Kaua‘i, which provided the first evidence of BBD in the Hawaiian archipelago. A rapid survey at the alleged outbreak site found disease to affect 6-7% of the montiporids, which is higher than a prior prevalence of less than 1% measured on Kaua‘i in 2004, indicative of an epizootic. Tagged colonies with BBD had an average rate of tissue loss of 5.7 cm2/day over a two-month period. Treatment of diseased colonies with a double band of marine epoxy, mixed with chlorine powder, effectively reduced colony mortality. Within two months, treated colonies lost an average of 30% less tissue compared to untreated controls

    Vibrio coralliilyticus Strain OCN008 Is an Etiological Agent of Acute Montipora White Syndrome

    Get PDF
    Identification of a pathogen is a critical first step in the epidemiology and subsequent management of a disease. A limited number of pathogens have been identified for diseases contributing to the global decline of coral populations. Here we describe Vibrio coralliilyticus strain OCN008, which induces acute Montipora white syndrome (aMWS), a tissue loss disease responsible for substantial mortality of the coral Montipora capitata in Ka ne‘ohe Bay, Hawai‘i. OCN008 was grown in pure culture, recreated signs of disease in experimentally infected corals, and could be recovered after infection. In addition, strains similar to OCN008 were isolated from diseased coral from the field but not from healthy M. capitata. OCN008 repeatedly induced the loss of healthy M. capitata tissue from fragments under laboratory conditions with a minimum infectious dose of between 107 and 108 CFU/ml of water. In contrast, Porites compressa was not infected by OCN008, indicating the host specificity of the pathogen. A decrease in water temperature from 27 to 23°C affected the time to disease onset, but the risk of infection was not significantly reduced. Temperature-dependent bleaching, which has been observed with the V. coralliilyticus type strain BAA-450, was not observed during infection with OCN008. A comparison of the OCN008 genome to the genomes of pathogenic V. coralliilyticus strains BAA-450 and P1 revealed similar virulence-associated genes and quorum-sensing systems. Despite this genetic similarity, infections of M. capitata by OCN008 do not follow the paradigm for V. coralliilyticus infections established by the type strain

    Pseudoalteromonas piratica sp. nov., a budding, prosthecate bacterium from diseased Montipora capitata, and emended description of the genus Pseudoalteromonas

    Get PDF
    A Gram-stain-negative, motile, rod-shaped bacterium designated OCN003T was cultivated from mucus taken from a diseased colony of the coral Montipora capitata in Kāne‘ohe Bay, O‘ahu, Hawai‘i. Colonies of OCN003T were pale yellow, 1–3 mm in diameter, convex, smooth and entire. The strain was heterotrophic, strictly aerobic and strictly halophilic. Cells of OCN003T produced buds on peritrichous prosthecae. Growth occurred within the pH range of 5.5 to 10, and the temperature range of 14 to 39 °C. Major fatty acids were 16 : 1!7c, 16 : 0, 18 : 1!7c, 17 : 1!8c, 12 : 0 3-OH and 17 : 0. Phylogenetic analysis of 1399 nucleotides of the 16S rRNA gene nucleotide sequence and a multi-locus sequence analysis of three genes placed OCN003T in the genus Pseudoalteromonas and indicated that the nearest relatives described are Pseudoalteromonas spongiae, P. luteoviolacea, P. ruthenica and P. phenolica (97–99 % sequence identity). The DNA G+C content of the strain’s genome was 40.0 mol%. Based on in silico DNA–DNA hybridization and phenotypic differences from related type strains, we propose that OCN003T represents the type strain of a novel species in the genus Pseudoalteromonas, proposed as Pseudoalteromonas piratica sp. nov. OCN003T (=CCOS1042T =CIP 111189T ). An emended description of the genus Pseudoalteromonas is presented

    The heterocyst regulatory protein HetP and its homologs modulate heterocyst commitment in Anabaena sp. strain PCC 7120

    Get PDF
    The commitment of differentiating cells to a specialized fate is fundamental to the correct assembly of tissues within a multicellular organism. Because commitment is often irreversible, entry into and progression through this phase of development must be tightly regulated. Under nitrogen-limiting conditions, the multicellular cyanobacterium Anabaena sp. strain PCC 7120 terminally commits ∼10% of its cells to become specialized nitrogen-fixing heterocysts. Although commitment is known to occur 9–14 h after the induction of differentiation, the factors that regulate the initiation and duration of this phase have yet to be elucidated. Here, we report the identification of four genes that share a functional domain and modulate heterocyst commitment: hetP (alr2818), asl1930, alr2902, and alr3234. Epistatic relationships between all four genes relating to commitment were revealed by deleting them individually and in combination; asl1930 and alr3234 acted most upstream to delay commitment, alr2902 acted next in the pathway to inhibit development, and hetP acted most downstream to drive commitment forward. Possible protein–protein interactions between HetP, its homologs, and the heterocyst master regulator, HetR, were assessed, and interaction partners were defined. Finally, patterns of gene expression for each homolog, as determined by promoter fusions to gfp and reverse transcription–quantitative PCR, were distinct from that of hetP in both spatiotemporal organization and regulation. We posit that a dynamic succession of protein–protein interactions modulates the timing and efficiency of the commitment phase of development and note that this work highlights the utility of a multicellular cyanobacterium as a model for the study of developmental processes
    corecore