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In response to a lack of environmental combined nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 dif-
ferentiates nitrogen-fixing heterocyst cells in a periodic pattern. HetR is a transcription factor that coordinates the regulation of
this developmental program. An inverted repeat-containing sequence in the hepA promoter required for proheterocyst-specific
transcription was identified based on sequence similarity to a previously characterized binding site for HetR in the promoter of
hetP. The binding affinity of HetR for the hepA site is roughly an order of magnitude lower than that for the hetP binding site. A
BLAST search of the Anabaena genome identified 166 hepA-like sites that occur as single or tandem sites (two binding sites sepa-
rated by 13 bp). The vast majority of these sites are present in predicted intergenic regions. HetR bound five representative single
binding sites in vitro, and binding was abrogated by transversions in the binding sites that conserved the inverted repeat nature
of the sites. Binding to four representative tandem sites was not observed. Transcriptional fusions of the green fluorescent pro-
tein gene gfp with putative promoter regions associated with the representative binding sites indicated that HetR could function
as either an activator or repressor and that activation was cell-type specific. Taken together, we have expanded the direct HetR
regulon and propose a model in which three categories of HetR binding sites, based on binding affinity and nucleotide sequence,
contribute to three of the four phases of differentiation.

In 1961, Monod and Jacob postulated that differentiation was the
sustained change in gene expression leading to a change in mor-

phology (1). This definition has held true for many developmental
programs, including endospore formation in Bacillus and Myxo-
coccus species, aerial mycelium and spore formation in Streptomy-
ces species, and the formation of stalk cells in Caulobacter species.
To mediate the changes in gene expression necessary for the pro-
duction of these specialized structures, each of these model organ-
isms relies on a global or master regulator of differentiation
(Spo0A in Bacillus subtilis [2, 3], FruA in Myxococcus xanthus [4,
5], AdpA in Streptomyces griseus [6, 7], and CtrA in Caulobacter
crescentus [8, 9]). These regulators directly interact with the pro-
moters of a few to many hundred genes, termed regulons, to either
activate or repress transcription, coordinating the process of dif-
ferentiation. While much work has focused on describing the
regulons of the aforementioned regulators, comparatively little is
known about the regulon of the master regulator of heterocyst
differentiation in Anabaena sp. strain PCC 7120 (hereinafter
called Anabaena).

Anabaena is a filamentous cyanobacterium that responds to
low levels of combined nitrogen by differentiating specialized het-
erocyst cells that provide a microoxic environment for the fixation
of dinitrogen by the oxygen-labile nitrogenase complex (reviewed
in references 10, 11, and 52). Heterocysts are morphologically
distinct cells that develop at semiregular intervals and are sepa-
rated by approximately 10 to 20 photosynthetic vegetative cells,
resulting in a 1-dimensional pattern along filaments. This differ-
entiation process results in a change in the transcription of
roughly 1,500 genes, which is facilitated by HetR, the master reg-
ulator of differentiation (12). A hetR deletion in Anabaena results
in the inability to develop heterocysts, whereas overexpression
yields supernumerary heterocysts even under nitrogen-replete
conditions (13, 14).

HetR acts as a transcriptional regulator that functions early in
the regulatory cascade governing differentiation. Recent work

mapping all of the transcriptional start sites (TSSs) in Anabaena
has identified 209 TSSs that are differentially regulated in wild-
type and hetR mutant strains; expression from these TSSs was
�8-fold higher in the wild type than in a hetR mutant strain (15).
The regulation by HetR of many of these TSSs is likely indirect.
HetR has been shown to bind to large DNA fragments (�150 bp)
from the promoters of patS, hepA, hetR (16), and pknE (17), as well
as to 29-bp and 40-bp DNA fragments derived from the promot-
ers of hetP (18) and hetZ (19), respectively, in vitro, suggesting
direct regulation of the transcription of these genes.

The ability of HetR to bind DNA is likely required for its reg-
ulatory function. The initial structure of the Fischerella HetR
dimer, shown to complement an Anabaena hetR mutant, has been
solved and displays four domains (20). Two flap domains extend
outwards from the sides of the structure and are thought to me-
diate protein-protein interactions. The hood domain, which in-
cludes both C termini, likely interacts with a diffusible peptide (21,
22) that is derived from two inhibitors of differentiation (PatS and
HetN) and promotes the degradation of HetR (23). The N termini
create a DNA-binding domain containing helix-turn-helix mo-
tifs. Recently, cocrystallization of Fischerella HetR bound to a
21-bp DNA fragment based on that from the hetP promoter has
identified the necessary protein-DNA interactions that confer
DNA binding specificity to HetR (12). Most strikingly, the inter-
action of Glu71 with three consecutive cytosines during DNA
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binding defines the requirement of an inverted repeat-containing
sequence with CCC-N5-GGG at its core. An allele of HetR with
Glu71 mutated was unable to bind DNA in vitro or complement
an Anabaena hetR mutant strain, illustrating the absolute require-
ment of this amino acid for proper HetR function.

Clearly defining the HetR regulon would provide insight not
only into the exact function of HetR but also into the cascade of
events driving cellular differentiation. Here, we report the identi-
fication of a 17-bp inverted repeat-containing sequence in the
hepA promoter that was bound by HetR in vitro and necessary for
transcription in vivo. Additional HetR binding sites were uncov-
ered by similarity to the hepA site, representatives of which were
bound by HetR and used in transcriptional fusions to show that
HetR can act as either an activator or repressor. These results
suggest complex regulation of the HetR regulon.

MATERIALS AND METHODS
Bacterial strains and growth conditions. The growth of Escherichia coli
and Anabaena sp. strain PCC 7120 (wild type) and its derivatives, the
concentrations of antibiotics, the induction of heterocysts in medium
lacking a source of combined nitrogen, and the conditions for photomi-
croscopy were as previously described (18, 24). Plasmids were introduced
into Anabaena strains by conjugation from E. coli as previously described
(25).

Plasmid and strain construction. The strains and plasmids used in
this study are listed in Table 1. The primers used in this study are listed in
Table S1 in the supplemental material. The integrity of all PCR-derived
constructs was verified by sequencing. The transcriptional promoter fu-
sions to the green fluorescent protein gene (gfp) were designed to include
at least the nearest TSS upstream from the chosen genes as defined by
Mitschke et al. (15). Plasmid and strain construction is detailed in the
supplemental material.

Purification of recombinant HetR and DNA binding assays. Recom-
binant HetR was overexpressed and purified from BL21(DE3) cells as
previously described (22). Electrophoretic mobility shift assays (EMSAs)
were performed essentially as described previously except that SYBR
green, instead of ethidium bromide, was utilized according to the manu-
facturer’s instructions for imaging gels to estimate Kd (dissociation con-
stant) (22). The preparation of the 29-bp DNA fragments used for binding
experiments is detailed in the supplemental material.

Fluorescence quantification. Green and red fluorescence from
Anabaena was quantified with a GloMax-Multi Jr detection system (Pro-
mega) using the blue and red fluorometer kits, respectively, according to
the manufacturer’s instructions. Initially, standard curves of the optical
density at 750 nm (OD750) versus both green and red autofluorescence
were generated for each tested Anabaena strain containing pAM1956 (26).
The optimal OD750 for measurement of both green and red fluorescence
was found to be 0.1 for all strains, with an acceptable range of 0.05 to 0.15;
beyond 0.15, the correlation between autofluorescence and OD750 was
nonlinear. For gfp fluorescence measurements, 20-ml liquid cultures of
each tested strain containing a transcriptional fusion to gfp were grown in
triplicate to an OD750 of 0.5 to 0.8. Aliquots from each culture were di-
luted to an OD750 of 0.1 in either BG-11 or BG-110 (BG-11 without a
source of fixed nitrogen) to a final volume of 1 ml, and red and green
fluorescence was measured. Red autofluorescence measurements were
used to validate the OD750 of 0.1. Using the standard curves, green back-
ground fluorescence was subtracted from the tested strains containing a
transcriptional fusion to gfp to yield a measurement of green fluorescence
in fluorescence standard units (FSU).

Phylogenetic analysis. Individual groups of the single and tandem
hepA-like binding sites, generally 29 bp and 59 bp, respectively, were
aligned with ClustalW. A maximum likelihood tree was constructed for
each group using the generalized time-reversible algorithm (27) and 1,000
bootstrap replicates were performed using MEGA5 (28).

Acetylene reduction assays, thin-layer chromatography, and alcian
blue staining. Aerobic and anaerobic acetylene reduction assays were per-
formed as previously described (24, 29). The positive-control �pbp6
strain used in the anaerobic assays was a transposon mutant that will be
published elsewhere (R. Oshiro, L. M. Cozy, and S. M. Callahan, unpub-
lished data). Lipid extractions were performed 24 h after the induction of

TABLE 1 Strains and plasmids used in this study

Strain or plasmid Relevant characteristic(s)a

Source or
reference

Anabaena strains
PCC 7120 Wild type Pasteur Culture

Collection
UHM101 �patA 36
UHM103 �hetR 24
UHM244 �hetR(E71N) 12
UHM269 �asr0081::�Spr/Smr This study
UHM270 �all1321::�Spr/Smr This study
UHM273 �alr1000::�Spr/Smr This study
UHM274 �all1748::�Spr/Smr This study
UHM275 �alr1347::�Spr/Smr This study
UHM276 �all5218::�Spr/Smr This study
UHM277 �asl0206::�Spr/Smr This study
UHM278 �all3746::�Spr/Smr This study

Plasmids
pAM504 Shuttle vector for replication in E. coli

and Anabaena; Kmr Nmr

53

pAM1956 Shuttle vector pAM504 with
promoterless gfp

26

pRL278 Suicide vector; Kmr Nmr 49
pDW9 Source of Spr/Smr � interposon 54
pET28b�hetR Expression vector for purifying

polyhistidine epitope-tagged HetR;
Kmr

22

pPJAV127 pAM504 with PhepA transcriptionally
fused to gfp

This study

pPJAV128 pAM504 with Pall0961

transcriptionally fused to gfp
This study

pPJAV132 pAM504 with Palr1347

transcriptionally fused to gfp
This study

pPJAV210 pAM504 with PhepA with a mutated
HetR binding site

This study

pPJAV203 pAM1956 with Pasr0081 This study
pPJAV204 pAM1956 with Pasl0206 This study
pPJAV205 pAM1956 with Palr1000 This study
pPJAV206 pAM1956 with Pall1321 This study
pPJAV207 pAM1956 with Pall1748 This study
pPJAV208 pAM1956 with Pall3746 This study
pPJAV209 pAM1956 with Pall5218 This study
pPJAV210 pAM1956 with Prrn16Sa This study
pPJAV162 pRL278 used to make UHM277 This study
pPJAV163 pRL278 used to make UHM278 This study
pPJAV164 pRL278 used to make UHM275 This study
pPJAV165 pRL278 used to make UHM273 This study
pPJAV166 pRL278 used to make UHM274 This study
pPJAV167 pRL278 used to make UHM270 This study
pPJAV168 pRL278 used to make UHM276 This study
pPJAV200 pRL278 used to make UHM269 This study
pPJAV201 Suicide plasmid used to replace

all0961 with an Spr/Smr interposon
insertion

This study

a �Spr/Smr, interposon conferring resistance to spectinomycin and streptomycin. Nm,
neomycin.
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heterocyst differentiation and run on thin-layer chromatography plates as
previously described (30). The plates were developed at 120°C for 1 h.
Heterocyst-specific exopolysaccharide was stained with alcian blue as pre-
viously described (18).

RESULTS
HetR binds to an inverted repeat in the hepA promoter required
for normal transcription. To date, a defined nucleotide sequence
required for HetR binding has only been shown for two sites (18,
19). Both sites contain the binding motif CCC-N5-GGG and are
located in the promoter regions of the hetP and hetZ genes. To
identify additional HetR binding sites in the Anabaena genome,
the promoter region DNA sequences of genes whose expression is
regulated by HetR were searched for the binding motif CCC-N5-
GGG in silico. Within the promoter regions of the patA, patS, hetR,
ntcA, hetP, hetZ, trpE, and hepA genes, 14 occurrences of this motif
were found. To test for DNA-protein interaction, an electropho-
retic mobility shift assay was conducted with HetR and 29-bp
DNA fragments containing the 14 CCC-N5-GGG motifs. A
shifted species, indicative of HetR binding to the DNA, was pres-
ent for 29-bp fragments derived from the hetZ, trpE, and hepA
promoter regions (Fig. 1A and data not shown). Binding of HetR
to the hetZ binding site has previously been shown (19), and the
results from the trpE binding site will be published elsewhere. The
third fragment bound by HetR contained a 17-bp inverted repeat
sequence, herein referred to as the binding site, centered 511 bases
upstream from the hepA coding region. The similarly shifted spe-
cies in the hetP and hepA lanes show that HetR binds to the hepA
binding site in vitro (Fig. 1A).

The sequence specificity of HetR for the hetP binding site was
assessed by Higa and Callahan (18) by mutation of six nucleotides
within the binding site that abrogated specific binding and were
later found to be primary sites of interaction between HetR and
this DNA (12). To test the sequence specificity of the hepA binding
site, the binding of HetR to a 29-bp DNA fragment with transver-
sions at each of the nucleotides comprising the 17-bp hepA bind-
ing site core, which maintained the inverted repeat structure, was
visualized by EMSA (Fig. 1A; see also Fig. S1 in the supplemental
material). Similar to the results for mutated hetP binding site that

remained unbound by HetR, no shift was seen with the mutated
hepA binding site. While faint bands are present in the lanes con-
taining hetP and hepA mutated binding sites, they are much higher
in the gel than the specific shifts seen from HetR bound to the
native sites and likely represent nonspecific interactions between
the DNA and protein. We conclude that HetR binds specifically to
the hepA binding site and suggest that the low stoichiometric ratio
of HetR to DNA used in the EMSA (2:1) may represent a physio-
logically relevant interaction.

The hepA gene encodes a component of an ABC transporter
involved in the construction of the heterocyst-specific exopolysac-
charide layer (31). A transcriptional fusion of the hepA promoter
with luxAB showed that transcription localized to proheterocyst
cells (32). To assess the function of the HetR binding site in the
hepA promoter (PhepA), a transcriptional fusion of PhepA to gfp was
constructed. Similar to the results for the published PhepA-luxAB
fusion, fluorescence from the PhepA-gfp fusion localized exclu-
sively to proheterocyst cells (cells committed to differentiation
that have not completed morphogenesis) in the wild-type and
patA mutant strain backgrounds, and no fluorescence was ob-
served in a hetR deletion mutant (Fig. 2A and G and data not
shown). The same mutation of the hepA binding site that abro-
gated specific HetR binding in vitro was introduced into the PhepA-
gfp fusion. With a mutated HetR binding site, no fluorescence was
observed from the PhepA-gfp fusion in any strain background un-
der any condition tested (Fig. 2B and G and data not shown),
suggesting that the interaction of HetR with the proposed binding
site in PhepA is necessary for transcriptional activation in prohet-
erocysts.

HetR binds to high- and low-affinity sites in vitro. The master
regulators of cellular differentiation in B. subtilis, M. xanthus, S.
griseus, and C. crescentus have been shown to interact with specific
DNA binding sites with either high or low affinities to control the
timing of developmental programs (3, 6, 33, 34). To investigate
the relative affinity of HetR for the hetP and hepA binding sites, the
approximate Kd was determined by EMSA. The Kd is defined as the
concentration of ligand (the hetP and hepA 29-bp DNA frag-
ments) at which half is bound by protein. Since HetR interacts

FIG 1 (A, B) HetR binds to 29-bp DNA fragments containing hepA (A) and representative single (B) binding sites in electrophoretic mobility shift assays. (C)
HetR no longer bound single binding sites containing transversion mutations in each of the 17-bp palindromes. In all lanes, 10 �M HetR and 5 �M DNA were
used. The gene name below each lane denotes the promoter region from which the respective 29-bp DNA fragment was derived.
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with DNA as a dimer, if half of the DNA is shifted, half of the
protein is also bound when a 2:1 ratio of protein to DNA is used.
In this assay, 200 nM hetP DNA was fully shifted by HetR (Fig.
3A). Using Sybr green, 100 nM DNA is nearly below the limit of
detection, so the Kd of HetR binding to the hetP 29-bp DNA frag-
ment in vitro is less than 200 nM, likely in the 100 nM range if not
lower. In contrast, at least 1 �M hepA DNA is necessary for ob-
servable shifting, and complete shifting is not observed at even 4
�M DNA (Fig. 3B). This suggests that the Kd of HetR and hepA
DNA is between 1 and 4 �M DNA, an order of magnitude higher
than the Kd of hetP DNA. Taken together, these data suggest that
the hetP 29-bp DNA fragment is a high-affinity binding site and
the hepA 29-bp DNA fragment is a low-affinity binding site.

The Anabaena genome contains 166 hepA-like predicted
HetR binding sites. As was noted by Du et al. (19), a search of the
Anabaena genome for a portion of the hepA binding site yielded 29
exact matches. To identify additional sites, a BLAST search was
performed using the 29-bp sequence utilized for HetR binding
(35). The search found the same sites as Du et al., as well as 137
more that have a 17-bp core similar to the hepA binding site,
totaling 166 hepA-like binding sites (see Dataset S1 in the supple-
mental material). Of these 166 sites, 85.5% (142 sites) differ from
the hepA binding site inverted repeat sequence by two nucleotides

or fewer, and 91% (151 sites) occur in intergenic regions. For sites
not located within coding regions, 60% (98 sites) are between
co-oriented genes, 16% (27 sites) are between convergent genes,
and 15% (26 sites) are between divergent genes. These sites are
found singly (66 sites) or in tandem (50 sites). In the tandem
arrangement, two single binding sites are separated by 13 nucleo-
tides in all but four cases. To determine the levels of similarity
within the single and tandem groups of binding sites, phylogenetic
trees were constructed. The trees for the single and tandem bind-
ing sites, constructed with 29-bp and 59-bp fragments, respec-
tively, each branched into two main groups (see Fig. S2 and S3 in
the supplemental material). To investigate the function of these
sites, five single and four tandem sites were chosen, generally two
from each branch of the respective tree, from promoter regions of
co-orientated, probably monocistronic genes as representatives
for further study.

HetR binds to single hepA-like binding sites in vitro. The
ability of HetR to bind to 29-bp DNA fragments containing rep-
resentative single hepA-like binding sites derived from the pro-
moter regions of the genes asr0081, all0961, all1321, all1748, and
all3746 was assessed by EMSAs (Fig. 1B). A shifted species, indi-
cating binding by HetR, was present for all five representative
hepA-like binding sites. While the lacZ negative-control DNA re-

FIG 2 Qualitative and quantitative analysis of transcriptional promoter fusions to GFP. All images were obtained 24 h after the removal of combined nitrogen.
(A to F) Images are light transmission micrographs (left) and fluorescence micrographs (right) of wild type (A, B, C, E) or �hetR (UHM103) (D, F) bearing
PhepA-GFP in pPJAV127 (A), PhepA-GFP with a mutated HetR binding site in pPJAV210 (B), Palr1347-GFP in pPJAV132 (C, D), and Pall5218-GFP in pPJAV209 (E,
F). Microscope and camera settings were identical for all fluorescence micrographs. Scale bar represents 20 �m. Carets indicate heterocysts. (G) Fluorescence was
quantified from the wild-type (green bars) and �hetR (UHM103) strains (red bars) bearing fusions as indicated and grown in the presence of nitrogen (solid bars)
or 24 h after the removal of combined nitrogen (hatched bars). All fluorescence measurements were taken at an OD750 of 0.1. Error bars show standard deviations.
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mained largely unbound, the majority of the DNA from the rep-
resentative fragments appears to be present in shifted bands. Ad-
ditionally, the five representative hepA-like binding sites shifted
higher in the EMSA than the hetP 29-bp DNA fragment. Previous
research has shown that HetR binds to DNA as a dimer but can
also form tetrameric species when interacting with DNA (12). It is
possible that HetR binds to the five representative hepA-like bind-
ing sites differently than to the hetP binding site, and this interac-
tion may include the multimerization of HetR.

To test the specificity of HetR interaction with the single bind-
ing sites, transversion mutations were introduced at each of the
nucleotides comprising the 17-bp binding sites within the 29-bp
DNA fragments containing representative single hepA-like bind-
ing sites, and binding was assessed (see Fig. S1 in the supplemental
material). No shifted bands were observed for any of the mutated
single binding sites (Fig. 1C). This indicates that the interaction of
HetR with the single binding site DNA fragments requires a spe-
cific nucleotide sequence for binding rather than a general 17-bp
inverted repeat motif. Together, these data show that HetR specif-
ically binds to the five representative hepA-like binding sites, pos-
sibly as a tetramer, in vitro.

The spacing of tandem sites would not sterically hinder bind-
ing by HetR. Like the analysis of the representative single binding
sites, the binding of HetR to 59-bp DNA fragments containing
representative tandem binding sites derived from the promoter
regions of asl0206, alr1000, all1347, and all5218 was assessed by

EMSA. No shifted species were observed for any of the tandem
binding sites, indicating that HetR did not interact with these
DNA fragments under the conditions tested (data not shown).
Based on the structure of HetR bound to DNA, it appears that the
flap domains that extend outwards from the DNA binding do-
main mediate the formation of a tetrameric complex and can in-
teract with DNA nonspecifically (12). A model of HetR bound to
a 29-bp fragment based on the hetP binding site showed that the
majority of the nucleotides interacted with HetR, and the possi-
bility of HetR interacting with as many as six additional nucleo-
tides was proposed. Because the 59-bp tandem sites investigated
here occur as two 29-bp binding sites with an additional base
between them, it was possible that the flap domains of two HetR
dimers adjacent to one another on a DNA strand could interact
with each other. To test this, a synthetic 58-bp DNA fragment
containing two 29-bp hetP binding sites aligned head-to-head was
assessed for HetR binding. In an EMSA, the 58-bp fragment was
shifted in the presence of HetR. The mobility of the shifted species
was significantly reduced compared to the mobility of the single
sites with HetR shown earlier (Fig. 1), consistent with binding of
HetR to this DNA as two adjacent dimers (data not shown).
Therefore, steric interference is unlikely to account for the absence
of binding between HetR and the representative tandem sites.

HetR either activates or represses transcription from repre-
sentative promoters. To test whether HetR binding in vitro is
indicative of transcriptional control in vivo, transcriptional fu-
sions of the nine promoter regions to gfp were individually intro-
duced into the wild type, a hetR deletion mutant, a hetR(E71N)
mutant (having an E-to-N change at position 71 encoded by
hetR), and a patA mutant strain. The wild type has a normal level
of HetR, the hetR deletion strain is devoid of HetR, and the patA
mutant strain has been shown to produce highly elevated HetR
levels (36). The hetR(E71N) mutant contains an allele of HetR in
the native chromosomal locus whose protein product is unable to
bind DNA in vitro because the E71N mutation abolishes interac-
tion with the core of the HetR binding site consensus sequence
(12). By assessing the fluorescence output from the nine transcrip-
tional fusions at the population and individual cell levels, the ef-
fect of HetR on transcription from each promoter fusion was de-
termined.

To account for possible plasmid copy number differences
across strain backgrounds, an rrn16Sa promoter fusion, chosen
for its robust transcription in Anabaena across various conditions
(37), was also assessed and displayed roughly equivalent fluores-
cence in all strains (see Table S2 in the supplemental material).
The fluorescence baseline was determined by measuring the fluo-
rescence from each strain background containing the promoter-
less copy of gfp on pAM1956 (26). Each promoter fusion was
measured in the four strain backgrounds in the presence (N�) and
absence (N�) of combined nitrogen, and the results for represen-
tative promoter fusions are presented in Fig. 2, while the complete
data set is included in the supplemental material. Quantification
of fluorescence from the asr0081, asl0206, all0961, alr1000,
alr1748, alr3746, and all5218 promoter fusions generally showed
that transcription was higher in both the hetR deletion and
hetR(E71N) mutant strains and lower in the patA mutant strain
than in the wild type; this suggests that HetR repressed transcrip-
tion from these promoters (Fig. 2E, F, and G; see also Table S2 in
the supplemental material). Fluorescence from all0961 was ob-
served only under N� conditions, while alr3746 was only tran-

FIG 3 Electrophoretic mobility shift assays approximating the binding affin-
ity of HetR for the hetP and hepA DNA binding sites. (A) For hetP 29-bp DNA
fragments, the concentrations of HetR used were 100 nM (2nd lane), 200 nM
(4th lane), and 300 nM (6th lane); HetR was absent from the 1st, 3rd, and 5th
lanes. (B) For hepA 29-bp DNA fragments, the concentrations of HetR used
were 1 �M (2nd lane), 2 �M (4th lane), and 4 �M (6th lane); HetR was absent
from the 1st, 3rd, and 5th lanes.
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scribed under N� conditions. Fluorescence from the all1321 pro-
moter fusion was almost entirely absent from any strain
background under N� or N� conditions. Unlike the other 8 pro-
moter fusions, the alr1347 promoter displayed higher fluores-
cence levels in the wild type than in either the hetR deletion or
hetR(E71N) mutant strain, indicating that HetR contributed to
the activation of this promoter (Fig. 2C and D; see also Table S2).

While the quantitative measurements described above pro-
vided a population average of transcriptional activity, at the indi-
vidual cell level, GFP localization was assessed by fluorescence
microscopy. Of the nine promoter fusions, only the alr1347 pro-
moter fusion (Palr1347-gfp) displayed any heterocyst-specific tran-
scription (Fig. 2C). In all strain backgrounds under N� condi-
tions, Palr1347-gfp showed low levels of fluorescence (data not
shown). When nitrogen was removed, vegetative cells continued
to fluoresce at a low level, while developing heterocysts fluoresced
with increased intensity (Fig. 2D and data not shown). Fluores-
cence from all other promoter fusions was present in both cell
types under N� and N� conditions in all strain backgrounds
tested (Fig. 2E and F and data not shown). These results suggest
that HetR can function as both an activator and repressor of tran-
scription from different promoters.

alr1000 is required for diazotrophic growth. To determine
the involvement of the nine representative genes in diazotrophic
growth, an antibiotic resistance cassette was inserted into each
gene, and the growth of the mutant strains on medium lacking a
source of combined nitrogen was assessed. Mutation of one gene,
all0961, was unsuccessful, suggesting that this gene is essential. Of
the eight remaining strains, only the alr1000 mutant was incapable
of growth on medium lacking a combined nitrogen source. This
strain developed a wild-type pattern of heterocysts that both pro-
duced heterocyst-specific glycolipids and stained with alcian blue
dye, indicating that the heterocyst exopolysaccharide layer was
present (see Fig. S4 in the supplemental material). An acetylene
reduction assay for nitrogenase activity showed that the alr1000
mutant was capable of nitrogen fixation under anaerobic condi-
tions, indicating that the heterocysts of this strain fix nitrogen only
in the absence of molecular oxygen, denoting the alr1000 mutant
strain as Fox� Fix� (29).

DISCUSSION

In this work, we identified an inverted repeat-containing HetR
binding site in the hepA promoter and showed its necessity for
proheterocyst-specific transcription. The hepA gene product is re-
quired for deposition of the exopolysaccharide layer that contrib-
utes to the physical barrier precluding oxygen entry into mature
heterocysts. Strains lacking functional HepA cannot maintain the
microoxic environment within heterocysts needed for the nitro-
genase complex to fix nitrogen (29). Transcription of hepA is up-
regulated 5 to 10 h after the removal of combined nitrogen and
localizes to proheterocyst and heterocyst cells (38, 39). Deletion
analysis of the hepA promoter region, utilizing chromosomal
hepA::luxAB fusions, identified a region required for the upregu-
lation following nitrogen step-down located between 585 and 414
bp upstream from the translational start site (40). This region
begins 7 bp upstream from a TSS that is dependent on a functional
copy of hetR for upregulation (15) and contains the HetR binding
site identified in this study. Smaller deletions in this region
showed that removal of the HetR binding site resulted in a modest
reduction in transcription (40); however, our data show a com-

plete loss of gfp fluorescence when the HetR binding site was mu-
tated, indicating abrogation of transcription. While these studies
both show an effect on hepA transcription from the loss of the
HetR binding site, differences in the reporters and their placement
on plasmids or in the chromosome could account for the discrep-
ancy.

The site in hepA was used to identify 166 potential HetR bind-
ing sites that were similar in sequence. This number of potential
HetR binding sites is comparable to the number of binding sites in
other well-studied regulons, including the cyclic AMP receptor
protein (CRP) (41), RpoN (42), and PhoP/Q (43) regulons in
Escherichia coli, Salmonella enterica serovar Typhimurium, and
Yersinia pestis, respectively, as well as the developmental regulons
of Spo0A from Bacillus subtilis (2) and CtrA from Caulobacter
crescentus (8). Of the 166 sites, only 13 hepA-like sites were tested,
and evidence consistent with real binding of HetR with the single
sites was found. While only a subset were tested, three lines of
evidence suggest that the hepA-like binding sites are biologically
relevant and are not present throughout the Anabaena genome by
chance. First, taking into account the 41.2% GC content of the
Anabaena genome, the 17-bp core hepA sequence is predicted to
occur less than once. Instead, this 17-bp sequence occurs 37 times,
68 times if either member of the A/T pair in the middle of the
inverted repeat sequence is allowed. Second, the majority of the
hepA-like binding sites are located in intergenic regions. Of the
166 hepA-like binding sites, 91% are present in intergenic regions,
compared to 17.4% of the genome that is predicted to not code for
protein (44). The HetR binding sites located in open reading
frames may regulate transcription, as work on the E. coli RutR
regulon showed that the majority of its binding sites were located
within coding regions (45). Third, nucleotide sequences similar to
the hepA binding site are present in heterocystous cyanobacteria
but absent in a nonheterocystous strain. A BLAST search of the
17-bp hepA palindrome revealed 20 similar sites in Nostoc punti-
forme ATCC 29133 and Anabaena azollae 0708, 25 in Anabaena
cylindrica PCC 7122, 149 in Anabaena variabilis ATCC 29413, all
of which form heterocysts, and none in Trichodesmium eryth-
raeum IMS101, a filamentous, nonheterocystous nitrogen-fixing
strain. Trichodesmium can grow diazotrophically, but nitrogen
fixation relies on a fluctuating ratio of temporally regulated diazo-
cytes rather than on a fixed ratio of spatially regulated heterocysts
(46, 47). The lack of heterocysts could account for the lack of
hepA-like HetR binding sites in Trichodesmium. These data are
consistent with the biological relevance of the proposed HetR
binding sites.

The interaction of HetR with the binding site present in the
hetP promoter is the best-characterized example of HetR binding
DNA to date. In EMSAs, HetR was shown to interact with the hetP
binding site at a 1:1 HetR dimer/DNA ratio, and a supershifted
species was observed at a 2:1 HetR dimer/DNA ratio, indicative of
a tetrameric HetR complex (22). This HetR-DNA interaction was
abrogated by mutation of six bases within the 17-bp binding site
palindrome (18). Additionally, crystal structures of HetR bound
to DNA based on the hetP binding site elucidated the specific
contributions of the amino acid residues that facilitate the inter-
action of HetR with DNA and described HetR binding to DNA as
a tetramer (12). In the work presented here, the Kd estimation of
HetR for the hetP and hepA binding sites showed that HetR inter-
acted with the hetP binding site with a higher affinity than with the
hepA site. Based on these differences in affinity and published
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stoichiometric ratios used in EMSAs of HetR with additional
known sites, we propose that HetR interacts with three categories
of binding sites to regulate different phases of heterocyst differen-
tiation: category I is comprised of sites that have been difficult to
delimit and define and exhibit low binding affinity in vitro; cate-
gory II is comprised of well defined sites that share a similar in-
verted repeat sequence and exhibit an intermediate level of bind-
ing affinity in vitro; and category III is comprised of well defined
sites that share a similar inverted repeat sequence different from
the category II sites and exhibit a high level of binding affinity in
vitro.

Category I HetR binding sites are poorly defined. Large DNA
fragments, labeled with 32P or biotin, from the promoters of hetR
(16, 17, 48), patS (16), and pknE (17) have been shown to interact
specifically with HetR in EMSAs. However, stoichiometric ratios
ranging from 50:1 to 1,500,000:1 of HetR to labeled DNA were
required for shifting. Binding of the PhetR DNA fragment at a 50:1
ratio did not result in complete shifting (17), and shifting of the
entire band has only been observed at far higher stoichiometric
ratios (48). Binding assays utilizing the method in this study were
unable to shift fragments derived from the hetR promoter (S. Ni
and M. A. Kennedy, unpublished results). This method is not
amenable to large stoichiometric ratios, so a direct comparison is
not possible.

Transcription of the hetR, patS, and pknE genes is upregulated
by 0.5 (49), 3 (50), and 3 h (17), respectively, following the re-
moval of combined nitrogen and localizes to single cells roughly 6
to 8 h following upregulation. All three genes require a functional
copy of hetR for upregulation (16, 17, 49), but sequence determi-
nants that provide specificity for HetR binding to these promoters
are unknown. Potential HetR binding sites derived from the hetR
and patS promoters were tested for interaction in this work by
performing EMSA, but no binding was observed (data not
shown). It is possible that additional proteins absent from the
EMSAs may interact with HetR to mediate binding or that post-
translational modification of HetR may facilitate binding to cate-
gory I sites. As the upregulation of hetR, patS, and pknE coincides
with the patterning phase of differentiation (Fig. 4), additional
factors required for high-affinity binding in vitro may also be up-
regulated during this phase.

The binding sites found in the work described here fall into
category II, which consists of sites with a defined palindromic
sequence and a binding affinity in vitro that falls between that of
category I and III sites. Many category II binding sites are adjacent
to genes without a clear connection to heterocyst function but
which may be involved in vegetative cell metabolism or heterocyst
morphogenesis. Metabolism under nitrogen-limiting conditions
is inherently different from nitrogen-replete growth in that fixed
nitrogen is provided exclusively from heterocysts rather than im-
ported from the environment. A role for HetR as a general regu-
lator of metabolism or heterocyst morphogenesis in the absence of
nitrogen is consistent with the overexpression of hetP in a hetR
deletion mutant resulting in the formation of heterocysts that
were only capable of nitrogen fixation under anoxic conditions
(18). It is possible that, while morphologically distinct heterocyst
cells can form in the absence of hetR with overexpression of hetP,
certain functional components are lacking that would normally be
controlled by HetR. This finding is consistent with the arl1000
mutant described in this work that, although it was able to pro-

duce morphologically distinct heterocysts, only fixed nitrogen un-
der anoxic conditions.

Category III HetR binding sites have inverted repeat sequences
with a low Kd and high binding affinity in vitro. Like category II
sites, mutation of nucleotides within the 17-bp inverted repeat
abrogates HetR binding (18). The only two category III binding
sites, those present in the hetP and hetZ promoters, are shifted at
1:1 and 6:1 HetR dimer-to-DNA ratios, respectively (22; P. Videau
and S. M. Callahan, unpublished results). The hetP and hetZ genes
have been reported to have overlapping function, and overexpres-
sion of hetP can partially bypass hetR (18, 51). It has been pro-
posed that HetP acts as a slave to HetR such that HetP, and per-
haps HetZ, executes the patterning decision made by HetR and
PatS. Consistent with this hypothesis, the functions of hetP and
hetZ and the timing of their upregulation coincide with the com-
mitment phase of differentiation (Fig. 4) (39).

Recent work in Anabaena identified TSSs in the wild type and a
�hetR mutant during growth with a source of nitrogen and 8 h
following nitrogen removal (15). A set of TSSs, termed DIF� (dif-
ferentiation-related changes in transcription from TSSs in the
wild type), were upregulated �8-fold in wild-type Anabaena but
not in a �hetR mutant. Of the category II HetR binding sites iden-
tified in this work, only 4 promoters with category II sites contain
TSSs in the DIF� category; these TSSs are within the promoter
regions of all0284, alr2835, alr3554, and alr4919. The TSSs nearest
to the remaining category II sites did not show an obvious corre-
lation with regulation by HetR. The distances of category II sites to

FIG 4 A model depicting the genetic interactions involved in the developmen-
tal cascade of heterocyst differentiation. The time during which the compo-
nents of each phase function following the removal of combined nitrogen is
indicated. Arrows indicate positive interactions, while bars indicate negative
interactions. C1, C2, and C3 correspond to the category I, II, or III HetR
binding sites, respectively, thought to contribute to the phase of differentia-
tion. Non-diazotrophic processes refers to processes that are downregulated
during diazotrophic growth.
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the closest TSS were fairly evenly distributed, but this could be an
artifact of an incomplete data set. The binding sites presented here
are part of an initial characterization of the direct HetR regulon
and probably do not encompass all HetR binding sites.
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