2,466 research outputs found

    Isolation and characterisation of 2-Tert-butyl-8-hydroxyquinoline as a crystalline solid and its blue fluorescent Li complex

    Get PDF
    Copyright © 2014 Poopathy Kathirgamanathan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.2-Tert-butyl-8-hydroxyquinoline (2-TB-8-hq) has been isolated as a crystalline solid and its X-ray structure elucidated, resolving three decades of controversy, since it was previously wrongly reported as yellow oil by some other workers. An improved synthetic method has been developed which increases the yield from 20% to 60%. The lithium complex of 2-TB-8-hq is blue emitting and the HOMO and LUMO levels are lowered by 0.86 eV and 0.74 eV, respectively, compared with the parent lithium 8-hydroxyquinolinolate (Li 8-hq)

    Abundances and variability of tropospheric volatile organic compounds at the South Pole and other Antarctic locations

    Get PDF
    Multiyear (2000-2006) seasonal measurements of carbon monoxide, hydrocarbons, halogenated species, dimethyl sulfide, carbonyl sulfide and C1-C4 alkyl nitrates at the South Pole are presented for the first time. At the South Pole, short-lived species (such as the alkenes) typically were not observed above their limits of detection because of long transit times from source regions. Peak mixing ratios of the longer lived species with anthropogenic sources were measured in late winter (August and September) with decreasing mixing ratios throughout the spring. In comparison, compounds with a strong oceanic source, such as bromoform and methyl iodide, had peak mixing ratios earlier in the winter (June and July) because of decreased oceanic production during the winter months. Dimethyl sulfide (DMS), which is also oceanically emitted but has a short lifetime, was rarely measured above 5 pptv. This is in contrast to high DMS mixing ratios at coastal locations and shows the importance of photochemical removal during transport to the pole. Alkyl nitrate mixing ratios peaked during April and then decreased throughout the winter. The dominant source of the alkyl nitrates in the region is believed to be oceanic emissions rather than photochemical production due to low alkane levels.Sampling of other tropospheric environments via a Twin Otter aircraft included the west coast of the Ross Sea and large stretches of the Antarctic Plateau. In the coastal atmosphere, a vertical gradient was found with the highest mixing ratios of marine emitted compounds at low altitudes. Conversely, for anthropogenically produced species the highest mixing ratios were measured at the highest altitudes, suggesting long-range transport to the continent. Flights flown through the plume of Mount Erebus, an active volcano, revealed that both carbon monoxide and carbonyl sulfide are emitted with an OCS/CO molar ratio of 3.3 × 10-3 consistent with direct observations by other investigators within the crater rim. © 2010

    Power-dependent speciation of volatile organic compounds in aircraft exhaust

    Get PDF
    As part of the third NASA Aircraft Particle Emissions Experiment (APEX-3, November 2005), whole air samples were collected to determine the emission rates of volatile organic compounds (VOCs) from aircraft equipped with three different gas-turbine engines (an Allison Engine 3007-A1E, a Pratt-Whitney 4158, and a Rolls-Royce RB211-535E4B). Samples were collected 1 m behind the engine exhaust plane of the engines while they were operated at powers ranging from idle up to 30% of maximum rated thrust.Exhaust emission indices (mass emitted per kilogram of fuel used) for CO and non-methane hydrocarbons (NMHCs) were calculated based on enhancements over background relative to CO 2. Emissions of all NMHCs were greatest at low power with values decreasing by an order of magnitude with increasing power. Previous studies have shown that scaling idle hydrocarbon emissions to formaldehyde or ethene (which are typically emitted at a ratio of 1-to-1 at idle) reduces variability amongst engine types. NMHC emissions were found to scale at low power, with alkenes contributing over 50% of measured NMHCs. However, as the power increases hydrocarbon emissions no longer scale to ethene, as the aromatics become the dominant species emitted. This may be due in part to a shift in combustion processes from thermal cracking (producing predominantly alkenes) to production of new molecules (producing proportionally more aromatics) as power increases. The formation of these aromatics is an intermediate step in the production of soot, which also increases with increasing power. The increase in aromatics relative to alkenes additionally results in a decrease in the hydroxyl radical reactivity and ozone formation potential of aircraft exhaust.Samples collected 30 m downwind of the engine were also analyzed for NMHCs and carbonyl compounds (acetone, 2-butanone and C 1-C 9 aldehydes). Formaldehyde was the predominant carbonyl emitted; however, the ratio of ethene-to-formaldehyde varied between the aircraft, possibly due to the sampling of transient emissions such as engine start-up and power changes. A large portion of the measured emissions (27-42% by mass) in the plume samples was made up of hazardous air pollutants (HAPs) with oxygenated compounds being most significant. © 2012

    Source origins, modeled profiles, and apportionments of halogenated hydrocarbons in the greater Pearl River Delta region, southern China

    Get PDF
    We analyze 16-month data of 13 major halocarbons measured at a southern China coastal site in the greater Pearl River Delta (PRD). A total of 188 canister air samples were collected from August 2001 to December 2002. Overall inspection indicated that CH2Cl2, C2Cl 4, and C2HCl3 had similar temporal variations while CFC-11, CFC-12, and CFC-113 showed the same emission patterns during the sampling period. Diurnal variations of halocarbons presented different patterns during ozone episode days, mainly related to emission strength, atmospheric dispersion, and photochemical lifetimes. For further statistics and source appointment, Lagrangian backward particle release simulations were conducted to help understand the potential source regions of all samples and classify them into different categories, including local Hong Kong, inner PRD, continental China, and marine air masses. With the exception of HCFC-142b, the mixing ratios of all halocarbons in marine air were significantly lower than those in urban and regional air (p < 0.01), whereas no significant difference was found between urban Hong Kong and inner PRD regional air, reflecting the dominant impact of the greater PRD regional air on the halocarbon levels. The halocarbon levels in this region were significantly influenced by anthropogenic sources, causing the halocarbon mixing ratios in South China Sea air to be higher than the corresponding background levels, as measured by global surface networks and by airborne missions such as Transport and Chemical Evolution Over the Pacific. Interspecies correlation analysis suggests that CHCl3 is mainly used as a solvent in Hong Kong but mostly as a feedstock for HCFC-22 in the inner PRD. Furthermore, CH3Cl is often used as a refrigerant and emitted from biomass/biofuel burning in the inner PRD. A positive matrix factorization receptor model was applied to the classified halocarbon samples in the greater PRD for source profiles and apportionments. Seven major sources were identified and quantified. Emissions from solvent use were the most significant source of halocarbons (71 ± 9%), while refrigeration was the second largest contributor (18 ± 2%). By further looking at samples from the inner PRD and from urban Hong Kong separately, we found that more solvent was used in the dry cleaning industry in Hong Kong, whereas the contribution of cleaning solvent in the electronic industry was higher in the inner PRD. Besides the two common sources of solvent use and refrigeration, the contributions of biomass/biofuel burning and feedstock in chemical manufacturing was remarkable in the inner PRD but negligible in Hong Kong. These findings are of help to effectively control and phase out the emissions of halocarbons in the greater PRD region of southern China Copyright 2009 by the American Geophysical Union
    corecore