1,686 research outputs found
Improved qubit bifurcation readout in the straddling regime of circuit QED
We study bifurcation measurement of a multi-level superconducting qubit using
a nonlinear resonator biased in the straddling regime, where the resonator
frequency sits between two qubit transition frequencies. We find that
high-fidelity bifurcation measurements are possible because of the enhanced
qubit-state-dependent pull of the resonator frequency, the behavior of
qubit-induced nonlinearities and the reduced Purcell decay rate of the qubit
that can be realized in this regime. Numerical simulations find up to a
threefold improvement in qubit readout fidelity when operating in, rather than
outside of, the straddling regime. High-fidelity measurements can be obtained
at much smaller qubit-resonator couplings than current typical experimental
realizations, reducing spectral crowding and potentially simplifying the
implementation of multi-qubit devices.Comment: 9 pages, 6 figure
Transient Accelerated Expansion and Double Quintessence
We consider Double Quintessence models for which the Dark Energy sector
consists of two coupled scalar fields. We study in particular the possibility
to have a transient acceleration in these models. In both Double Quintessence
models studied here, it is shown that if acceleration occurs, it is necessarily
transient. We consider also the possibility to have transient acceleration in
two one-field models, the Albrecht-Skordis model and the pure exponential.
Using separate conservative constraints (marginalizing over the other
parameters) on the effective equation of state , the relative density
of the Dark Energy and the present age of the universe, we
construct scenarios with a transient acceleration that has already ended at the
present time, and even with no acceleration at all, but a less conservative
analysis using the CMB data rules out the last possibility. The scenario with a
transient acceleration ended by today, can be implemented for the range of
cosmological parameters and .Comment: Version accepted in Phys. Rev. D, 22 pages, 10 figures, 4 table
Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base
Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots
Coupling Superconducting Qubits via a Cavity Bus
Superconducting circuits are promising candidates for constructing quantum
bits (qubits) in a quantum computer; single-qubit operations are now routine,
and several examples of two qubit interactions and gates having been
demonstrated. These experiments show that two nearby qubits can be readily
coupled with local interactions. Performing gates between an arbitrary pair of
distant qubits is highly desirable for any quantum computer architecture, but
has not yet been demonstrated. An efficient way to achieve this goal is to
couple the qubits to a quantum bus, which distributes quantum information among
the qubits. Here we show the implementation of such a quantum bus, using
microwave photons confined in a transmission line cavity, to couple two
superconducting qubits on opposite sides of a chip. The interaction is mediated
by the exchange of virtual rather than real photons, avoiding cavity induced
loss. Using fast control of the qubits to switch the coupling effectively on
and off, we demonstrate coherent transfer of quantum states between the qubits.
The cavity is also used to perform multiplexed control and measurement of the
qubit states. This approach can be expanded to more than two qubits, and is an
attractive architecture for quantum information processing on a chip.Comment: 6 pages, 4 figures, to be published in Natur
Climbing the Jaynes-Cummings Ladder and Observing its Sqrt(n) Nonlinearity in a Cavity QED System
The already very active field of cavity quantum electrodynamics (QED),
traditionally studied in atomic systems, has recently gained additional
momentum by the advent of experiments with semiconducting and superconducting
systems. In these solid state implementations, novel quantum optics experiments
are enabled by the possibility to engineer many of the characteristic
parameters at will. In cavity QED, the observation of the vacuum Rabi mode
splitting is a hallmark experiment aimed at probing the nature of matter-light
interaction on the level of a single quantum. However, this effect can, at
least in principle, be explained classically as the normal mode splitting of
two coupled linear oscillators. It has been suggested that an observation of
the scaling of the resonant atom-photon coupling strength in the
Jaynes-Cummings energy ladder with the square root of photon number n is
sufficient to prove that the system is quantum mechanical in nature. Here we
report a direct spectroscopic observation of this characteristic quantum
nonlinearity. Measuring the photonic degree of freedom of the coupled system,
our measurements provide unambiguous, long sought for spectroscopic evidence
for the quantum nature of the resonant atom-field interaction in cavity QED. We
explore atom-photon superposition states involving up to two photons, using a
spectroscopic pump and probe technique. The experiments have been performed in
a circuit QED setup, in which ultra strong coupling is realized by the large
dipole coupling strength and the long coherence time of a superconducting qubit
embedded in a high quality on-chip microwave cavity.Comment: ArXiv version of manuscript published in Nature in July 2008, 5
pages, 5 figures, hi-res version at
http://www.finkjohannes.com/SqrtNArxivPreprint.pd
Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits
We present an experimentally implementable method to couple Josephson charge
qubits and to generate and detect macroscopic entangled states. A
large-junction superconducting quantum interference device is used in the qubit
circuit for both coupling qubits and implementing the readout. Also, we
explicitly show how to achieve a microwave-assisted macroscopic entanglement in
the coupled-qubit system.Comment: 8 pages, 4 figure
The coherent interaction between matter and radiation - A tutorial on the Jaynes-Cummings model
The Jaynes-Cummings (JC) model is a milestone in the theory of coherent
interaction between a two-level system and a single bosonic field mode. This
tutorial aims to give a complete description of the model, analyzing the
Hamiltonian of the system, its eigenvalues and eigestates, in order to
characterize the dynamics of system and subsystems. The Rabi oscillations,
together with the collapse and revival effects, are distinguishing features of
the JC model and are important for applications in Quantum Information theory.
The framework of cavity quantum electrodynamics (cQED) is chosen and two
fundamental experiments on the coherent interaction between Rydberg atoms and a
single cavity field mode are described.Comment: 22 pages, 7 figures. Tutorial. Submitted to a special issue of EPJ -
ST devoted to the memory of Federico Casagrand
- …