214 research outputs found
Inelastic scattering of broadband electron wave packets driven by an intense mid-infrared laser field
Intense, 100 fs laser pulses at 3.2 and 3.6 um are used to generate, by
multi-photon ionization, broadband wave packets with up to 400 eV of kinetic
energy and charge states up to Xe+6. The multiple ionization pathways are well
described by a white electron wave packet and field-free inelastic cross
sections, averaged over the intensity-dependent energy distribution for (e,ne)
electron impact ionization. The analysis also suggests a contribution from a 4d
core excitation in xenon
Nonlinear stability analysis of the Emden-Fowler equation
In this paper we qualitatively study radial solutions of the semilinear
elliptic equation with and on the
positive real line, called the Emden-Fowler or Lane-Emden equation. This
equation is of great importance in Newtonian astrophysics and the constant
is called the polytropic index. By introducing a set of new variables, the
Emden-Fowler equation can be written as an autonomous system of two ordinary
differential equations which can be analyzed using linear and nonlinear
stability analysis. We perform the study of stability by using linear stability
analysis, the Jacobi stability analysis (Kosambi-Cartan-Chern theory) and the
Lyapunov function method. Depending on the values of these different
methods yield different results. We identify a parameter range for where
all three methods imply stability.Comment: 12 pages; new reference added; 3 new references added; fully revised
versio
Algebraic structure of gravity in Ashtekar variables
The BRST transformations for gravity in Ashtekar variables are obtained by
using the Maurer-Cartan horizontality conditions. The BRST cohomology in
Ashtekar variables is calculated with the help of an operator
introduced by S.P. Sorella, which allows to decompose the exterior derivative
as a BRST commutator. This BRST cohomology leads to the differential invariants
for four-dimensional manifolds.Comment: 19 pages, report REF. TUW 94-1
Ultraintense X-Ray Induced Ionization, Dissociation, and Frustrated Absorption in Molecular Nitrogen
Sequential multiple photoionization of the prototypical molecule N_2 is studied with femtosecond time resolution using the Linac Coherent Light Source (LCLS). A detailed picture of intense x-ray induced ionization and dissociation dynamics is revealed, including a molecular mechanism of frustrated absorption that suppresses the formation of high charge states at short pulse durations. The inverse scaling of the average target charge state with x-ray peak brightness has possible implications for single-pulse imaging applications
Hidden Symmetries for Ellipsoid-Solitonic Deformations of Kerr-Sen Black Holes and Quantum Anomalies
We prove the existence of hidden symmetries in the general relativity theory
defined by exact solutions with generic off-diagonal metrics, nonholonomic
(non-integrable) constraints, and deformations of the frame and linear
connection structure. A special role in characterization of such spacetimes is
played by the corresponding nonholonomic generalizations of Stackel-Killing and
Killing-Yano tensors. There are constructed new classes of black hole solutions
and studied hidden symmetries for ellipsoidal and/or solitonic deformations of
"prime" Kerr-Sen black holes into "target" off-diagonal metrics. In general,
the classical conserved quantities (integrable and not-integrable) do not
transfer to the quantized systems and produce quantum gravitational anomalies.
We prove that such anomalies can be eliminated via corresponding nonholonomic
deformations of fundamental geometric objects (connections and corresponding
Riemannian and Ricci tensors) and by frame transforms.Comment: latex2e, 11pt, 34 pages, the variant accepted by EPJC, with
additional explanations, modifications and new references requested by
refere
Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT
We derive and extend the time-dependent surface-flux method introduced in [L. Tao, A. Scrinzi, New J. Phys. 14, 013021 (2012)] within a time-dependent density-functional theory (TDDFT) formalism and use it to calculate photoelectron spectra and angular distributions of atoms and molecules when excited by laser pulses. We present other, existing computational TDDFT methods that are suitable for the calculation of electron emission in compact spatial regions, and compare their results. We illustrate the performance of the new method by simulating strong-field ionization of C60 fullerene and discuss final state effects in the orbital reconstruction of planar organic molecules
Clocking Auger Electrons
Intense X-ray free-electron lasers (XFELs) can rapidly excite matter, leaving
it in inherently unstable states that decay on femtosecond timescales. As the
relaxation occurs primarily via Auger emission, excited state observations are
constrained by Auger decay. In situ measurement of this process is therefore
crucial, yet it has thus far remained elusive at XFELs due to inherent timing
and phase jitter, which can be orders of magnitude larger than the timescale of
Auger decay. Here, we develop a new approach termed self-referenced attosecond
streaking, based upon simultaneous measurements of streaked photo- and Auger
electrons. Our technique enables sub-femtosecond resolution in spite of jitter.
We exploit this method to make the first XFEL time-domain measurement of the
Auger decay lifetime in atomic neon, and, by using a fully quantum-mechanical
description, retrieve a lifetime of fs for the KLL
decay channel. Importantly, our technique can be generalised to permit the
extension of attosecond time-resolved experiments to all current and future FEL
facilities.Comment: Main text: 20 pages, 3 figures. Supplementary information: 17 pages,
6 figure
Clocking Auger electrons
Intense X-ray free-electron lasers (XFELs) can rapidly excite matter, leaving it in inherently unstable states that decay on femtosecond timescales. The relaxation occurs primarily via Auger emission, so excited-state observations are constrained by Auger decay. In situ measurement of this process is therefore crucial, yet it has thus far remained elusive in XFELs owing to inherent timing and phase jitter, which can be orders of magnitude larger than the timescale of Auger decay. Here we develop an approach termed ‘self-referenced attosecond streaking’ that provides subfemtosecond resolution in spite of jitter, enabling time-domain measurement of the delay between photoemission and Auger emission in atomic neon excited by intense, femtosecond pulses from an XFEL. Using a fully quantum-mechanical description that treats the ionization, core-hole formation and Auger emission as a single process, the observed delay yields an Auger decay lifetime of 2.2_−0.3^+0.2 fs for the KLL decay channel
- …