23 research outputs found

    Anal Biochem

    No full text
    To gain insights into complex biological processes, such as transcription and replication, the analysis of protein-DNA interactions and the determination of their sequence requirements are of central importance. In this study, we probed protein microarray technology and ultraviolet crosslinking combined with mass spectrometry (MS) for their practicability to study protein–DNA interactions. We chose as a model system the well-characterized interaction of bacterial replication initiator DnaA with its cognate binding site, the DnaA box. Interactions of DnaA domain 4 with a high-affinity DnaA box (R4) and with a low-affinity DnaA box (R3) were compared. A mutant DnaA domain 4, A440V, was included in the study. DnaA domain 4, wt, spotted onto FAST slides, revealed a strong signal only with a Cy5-labeled, double-stranded, 21-mer oligonucleotide containing DnaA box R4. No signals were obtained when applying the mutant protein. Ultraviolet crosslinking combined with nanoLC/MALDI-TOF MS located the site of interaction to a peptide spanning amino acids 433– 442 of Escherichia coli DnaA. This fragment contains six residues that were identified as being involved in DNA binding by recently published crystal structure and nuclear magnetic resonance (NMR) analysis. In the future, the technologies applied in this study will become important tools for studying protein–DNA interactions

    Embo J.

    No full text
    The coupling of ATP binding/hydrolysis to macromolecular secretion systems is crucial to the pathogenicity of Gram-negative bacteria. We reported previously the structure of the ADP-bound form of the hexameric traffic VirB11 ATPase of the Helicobacter pylori type IV secretion system (named HP0525), and proposed that it functions as a gating molecule at the inner membrane, cycling through closed and open forms regulated by ATP binding/hydrolysis. Here, we combine crystal structures with analytical ultracentrifugation experiments to show that VirB11 ATPases indeed function as dynamic hexameric assemblies. In the absence of nucleotide, the N-terminal domains exhibit a collection of rigid-body conformations. Nucleotide binding ‘locks’ the hexamer into a symmetric and compact structure. We propose that VirB11s use the mechanical leverage generated by such nucleotide-dependent conformational changes to facilitate the export of substrates or the assembly of the type IV secretion apparatus. Bio chemical characterization of mutant forms of HP0525 coupled with electron microscopy and in vivo assays support such hypothesis, and establish the relevance of VirB11s ATPases as drug targets against pathogenic bacteria

    Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period

    No full text
    A larger proportion of the fixed carbon is retained as starch in the leaf in short days, providing a larger store to support metabolism and carbon export during the long night. The mechanisms that facilitate this adjustment of the sink-source balance are unknown. Starchless pgm mutants were analysed to discover responses that are triggered when diurnal starch turnover is disturbed. Sugars accumulated to high levels during the day, and fell to very low levels by the middle of the night. Sugars rose rapidly in the roots and rosette after illumination, and decreased later in the light period. Global transcript profiling revealed only small differences between pgm and Col0 at the end of the day but large differences at the end of the night, when pgm resembled Col0 after a 4-6 h prolongation of the night and many genes required for biosynthesis and growth were repressed [Plant J. 37 (2004) 914]. It is concluded that transient sugar depletion at the end of the night inhibits carbon utilization at the start of the ensuing light period. A second set of experiments investigated the stimulation of starch synthesis in response to short days in wild-type Col0. In short days, sugars were very low in the roots and rosette at the end of the dark period, and after illumination accumulated rapidly in both organs to levels that were higher than in long days. The response resembles pgm, except that carbohydrate accumulated in the leaf as starch instead of sugars. A similar response was found after transfer from long to short days. Inclusion of sugar in the rooting medium attenuated the stimulation of starch synthesis. Post-translational activation of ADP-glucose pyrophosphorylase (AGPase) was increased in pgm, and in Col0 in short days. It is concluded that starch synthesis is stimulated in short day conditions because sugar depletion at the end of the night triggers a temporary inhibition of growth and carbohydrate utilization in the first part of the light period, leading to transient accumulation of sugar and activation of AGPase
    corecore