79 research outputs found

    Bowhead Whale (Balaena mysticetus) Migration and Calling Behaviour in the Alaskan Beaufort Sea, Autumn 2001–04: An Acoustic Localization Study

    Get PDF
    The westward migration of bowhead whales (Bering Sea stock) was studied during autumn 2001–04 as part of an oil industry monitoring program. An array of Directional Autonomous Seafloor Acoustic Recorders (DASARs) was deployed northeast of the Northstar oil production island near Prudhoe Bay, Alaska. Underwater sounds were recorded continuously for 24–35 days per year, mainly in September. More than 130 000 bowhead calls were detected, and the directional capability of DASARs allowed triangulation of whale position for ~93 500 calls. The migration pathway was closer to shore in 2003–04 than in 2001–02. Calls were clumped in space and time, and there was significantly more calling at night than by day. From 65% to 82% of calls were simple frequency-modulated calls, and the percentage of complex calls was positively related to the daily number of calls. No songs were detected, but in 2004 there were numerous call sequences consisting of repeated identical calls in series and generally lasting up to a few minutes. The DASAR methodology provides detailed information on the temporal and spatial distribution of calling whales and on their acoustic repertoire.La migration Ă  l’ouest de la baleine borĂ©ale (population de la mer de BĂ©ring) a Ă©tĂ© Ă©tudiĂ©e durant quatre automnes (2001-2004) dans le cadre d’un programme d’étude de l’industrie pĂ©troliĂšre. Un rĂ©seau d’enregistreurs sous-marins autonomes et directionnels (DASAR) a Ă©tĂ© dĂ©ployĂ© au nord-est de Northstar, une Ăźle artificielle d’exploitation pĂ©troliĂšre prĂšs de Prudhoe Bay en Alaska. Des enregistrements sous-marins continus ont Ă©tĂ© rĂ©coltĂ©s pendant 24 Ă  35 jours chaque annĂ©e, principalement pendant le mois de septembre. Plus de 130 000 appels de baleines ont Ă©tĂ© enregistrĂ©s et la capacitĂ© directionnelle des DASAR a permis de dĂ©terminer par triangulation la position des baleines pour ~ 93 500 de ces appels. Le corridor de migration s’est avĂ©rĂ© plus proche de la cĂŽte en 2003-2004 qu’en 2001-2002. Les appels des baleines Ă©taient groupĂ©s dans le temps et l’espace et il y avait significativement plus d’appels la nuit que le jour. Soixante-cinq Ă  82 % des appels appartenaient au type dit « simple », et le pourcentage d’appels du type « complexe » Ă©tait positivement corrĂ©lĂ© au nombre journalier d’appels. Aucun chant n’a Ă©tĂ© dĂ©tectĂ©, mais les enregistrements de 2004 contenaient de nombreuses sĂ©quences d’appels composĂ©es de sĂ©ries d’appels identiques rĂ©pĂ©tĂ©s pendant 30 minutes et plus. L’utilisation des DASAR a permis d’obtenir des renseignements dĂ©taillĂ©s sur la distribution spatiale et temporelle de baleines borĂ©ales vocalisant ainsi que sur leur rĂ©pertoire acoustique

    Respiration and Heart Rate at the Surface between Dives in Northern Elephant Seals

    Get PDF
    All underwater activities of diving mammals are constrained by the need for surface gas exchange. Our aim was to measure respiratory rate (fb) and heart rate (fh) at the surface between dives in free-ranging northern elephant seals Mirounga angustirostris. We recorded fb and fh acoustically in six translocated juveniles, 1.8-2. 4 years old, and three migrating adult males from the rookery at Ano Nuevo, California, USA. To each seal, we attached a diving instrument to record the diving pattern, a satellite tag to track movements and location, a digital audio tape recorder or acoustic datalogger with an external hydrophone to record the sounds of respiration and fh at the surface, and a VHF transmitter to facilitate recovery. During surface intervals averaging 2.2+/−0.4 min, adult males breathed a mean of 32.7+/−5.4 times at a rate of 15. 3+/−1.8 breaths min(−)(1) (means +/− s.d., N=57). Mean fh at the surface was 84+/−3 beats min(−)(1). The fb of juveniles was 26 % faster than that of adult males, averaging 19.2+/−2.2 breaths min(−)(1) for a mean total of 41.2+/−5.0 breaths during surface intervals lasting 2.6+/−0.31 min. Mean fh at the surface was 106+/−3 beats min(−)(1). fb and fh did not change significantly over the course of surface intervals. Surface fb and fh were not clearly associated with levels of exertion, such as rapid horizontal transit or apparent foraging, or with measures of immediately previous or subsequent diving performance, such as diving duration, diving depth or swimming speed. Together, surface respiration rate and the duration of the preceding dive were significant predictors of surface interval duration. This implies that elephant seals minimize surface time spent loading oxygen depending on rates of oxygen uptake and previous depletion of stores

    \u3ci\u3eIn Situ\u3c/i\u3e Cardiac Performance of Pacific Bluefin Tuna Hearts in Response to Acute Temperature Change

    Get PDF
    This study reports the cardiovascular physiology of the Pacific bluefin tuna (Thunnus orientalis) in an in situ heart preparation. The performance of the Pacific bluefin tuna heart was examined at temperatures from 30°C down to 2°C. Heart rates ranged from 156 beats min–1 at 30°C to 13 beats min–1 at 2°C. Maximal stroke volumes were 1.1 ml kg–1 at 25°C and 1.3 ml kg–1 at 2°C. Maximal cardiac outputs were 18.1 ml kg–1 min–1 at 2°C and 106 ml kg–1 min–1 at 25°C. These data indicate that cardiovascular function in the Pacific bluefin tuna exhibits a strong temperature dependence, but cardiac function is retained at temperatures colder than those tolerated by tropical tunas. The Pacific bluefin tuna\u27s cardiac performance in the cold may be a key adaptation supporting the broad thermal niche of the bluefin tuna group in the wild. In situ data from Pacific bluefin are compared to in situ measurements of cardiac performance in yellowfin tuna and preliminary results from albacore tuna

    A comparison of three methods for estimating call densities of migrating bowhead whales using passive acoustic monitoring

    Get PDF
    TAM thanks partial support by Centro de Estatistica e AplicaçÔes, Universidade de Lisboa (funded by FCT—Fundação para a CiĂȘncia e a Tecnologia, Portugal, through the project UID/MAT/00006/2013).Various methods for estimating animal density from visual data, including distance sampling (DS) and spatially explicit capture-recapture (SECR), have recently been adapted for estimating call density using passive acoustic monitoring (PAM) data, e.g., recordings of animal calls. Here we summarize three methods available for passive acoustic density estimation: plot sampling, DS, and SECR. The first two require distances from the sensors to calling animals (which are obtained by triangulating calls matched among sensors), but SECR only requires matching (not localizing) calls among sensors. We compare via simulation what biases can arise when assumptions underlying these methods are violated. We use insights gleaned from the simulation to compare the performance of the methods when applied to a case study: bowhead whale call data collected from arrays of directional acoustic sensors at five sites in the Beaufort Sea during the fall migration 2007–2014. Call detections were manually extracted from the recordings by human observers simultaneously scanning spectrograms of recordings from a given site. The large discrepancies between estimates derived using SECR and the other two methods were likely caused primarily by the manual detection procedure leading to non-independent detections among sensors, while errors in estimated distances between detected calls and sensors also contributed to the observed patterns. Our study is among the first to provide a direct comparison of the three methods applied to PAM data and highlights the importance that all assumptions of an analysis method need to be met for correct inference.Publisher PDFPeer reviewe

    Behavioral Response Study on Seismic Airgun and Vessel Exposures in Narwhals

    Get PDF
    One of the last pristine marine soundscapes, the Arctic, is exposed to increasing anthropogenic activities due to climate-induced decrease in sea ice coverage. In this study, we combined movement and behavioral data from animal-borne tags in a controlled sound exposure study to describe the reactions of narwhals, Monodon monoceros, to airgun pulses and ship noise. Sixteen narwhals were live captured and instrumented with satellite tags and Acousonde acoustic-behavioral recorders, and 11 of them were exposed to airgun pulses and vessel sounds. The sound exposure levels (SELs) of pulses from a small airgun (3.4 L) used in 2017 and a larger one (17.0 L) used in 2018 were measured using drifting recorders. The experiment was divided into trials with airgun and ship-noise exposure, intertrials with only ship-noise, and pre- and postexposure periods. Both trials and intertrials lasted ∌4 h on average per individual. Depending on the location of the whales, the number of separate exposures ranged between one and eight trials or intertrials. Received pulse SELs dropped below 130 dB re 1 ÎŒPa2 s by 2.5 km for the small airgun and 4–9 km for the larger airgun, and background noise levels were reached at distances of ∌3 and 8–10.5 km, respectively, for the small and big airguns. Avoidance reactions of the whales could be detected at distances >5 km in 2017 and >11 km in 2018 when in line of sight of the seismic vessel. Meanwhile, a ∌30% increase in horizontal travel speed could be detected up to 2 h before the seismic vessel was in line of sight. Applying line of sight as the criterion for exposure thus excludes some potential pre-response effects, and our estimates of effects must therefore be considered conservative. The whales reacted by changing their swimming speed and direction at distances between 5 and 24 km depending on topographical surroundings where the exposure occurred. The propensity of the whales to move towards the shore increased with increasing exposure (i.e., shorter distance to vessels) and was highest with the large airgun used in 2018, where the whales moved towards the shore at distances of 10–15 km. No long-term effects of the response study could be detected

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials
    • 

    corecore