62 research outputs found

    Exercise rescues obese mothers' insulin sensitivity, placental hypoxia and male offspring insulin sensitivity

    Get PDF
    The prevalence of obesity during pregnancy continues to increase at alarming rates. This is concerning as in addition to immediate impacts on maternal wellbeing, obesity during pregnancy has detrimental effects on the long-term health of the offspring through non-genetic mechanisms. A major knowledge gap limiting our capacity to develop intervention strategies is the lack of understanding of the factors in the obese mother that mediate these epigenetic effects on the offspring. We used a mouse model of maternal-diet induced obesity to define predictive correlations between maternal factors and offspring insulin resistance. Maternal hyperinsulinemia (independent of maternal body weight and composition) strongly associated with offspring insulin resistance. To test causality, we implemented an exercise intervention that improved maternal insulin sensitivity without changing maternal body weight or composition. This maternal intervention prevented excess placental lipid deposition and hypoxia (independent of sex) and insulin resistance in male offspring. We conclude that hyperinsulinemia is a key programming factor and therefore an important interventional target during obese pregnancy, and propose moderate exercise as a promising strategy to improve metabolic outcome in both the obese mother and her offspring.This work received funding from the European Union’s Seventh Framework Programme [FP7/2007-2013, project EarlyNutrition, grant agreement n°289346]; the MRC Metabolic Diseases Unit award [MC_UU_12012/4]; the Biotechnology and Biological Sciences Research Council [BB/M001636/1]; the British Heart Foundation (PG/14/20/30769) and the São Paulo Research Foundation (Process number: 2014/20380-5)

    Effects of maternal diet-induced obesity on metabolic disorders and age-associated miRNA expression in the liver of male mouse offspring

    Get PDF
    Objective: This study investigated the effect of maternal obesity on aged-male offspring liver phenotype and hepatic expression of a programmed miRNA. Methods: A mouse model (C57BL/6 J) of maternal diet-induced obesity was used to investigate fasting-serum metabolites, hepatic lipid content, steatosis, and relative mRNA levels (RT-PCR) and protein expression (Western blotting) of key components involved in hepatic and mitochondrial metabolism in 12-month-old offspring. We also measured hepatic lipid peroxidation, mitochondrial content, fibrosis stage, and apoptosis in the offspring. To investigate potential mechanisms leading to the observed phenotype, we also measured the expression of miR-582 (a miRNA previously implicated in liver cirrhosis) in 8-week-old and 12-month-old offspring. Results: Body weight and composition was similar between 8-week-old offspring, however, 12-month-old offspring from obese mothers had increased body weight and fat mass (19.5 ± 0.8 g versus 10.4 ± 0.9 g, p < 0.001), as well as elevated serum levels of LDL and leptin and hepatic lipid content (21.4 ± 2.1 g versus 12.9 ± 1.8 g, p < 0.01). This was accompanied by steatosis, increased Bax/Bcl-2 ratio, and overexpression of p-SAPK/JNK, Tgfβ1, Map3k14, and Col1a1 in the liver. Decreased levels of Bcl-2, p-AMPKα, total AMPKα and mitochondrial complexes were also observed. Maternal obesity was associated with increased hepatic miR-582-3p (p < 0.001) and miR-582-5p (p < 0.05). Age was also associated with an increase in both miR-582-3p and miR-582-5p, however, this was more pronounced in the offspring of obese dams, such that differences were greater in 12-month-old animals (−3p: 7.34 ± 1.35 versus 1.39 ± 0.50, p < 0.0001 and −5p: 4.66 ± 1.16 versus 1.63 ± 0.65, p < 0.05). Conclusion: Our findings demonstrate that maternal diet-induced obesity has detrimental effects on offspring body composition as well as hepatic phenotype that may be indicative of accelerated-ageing phenotype. These whole-body and cellular phenotypes were associated with age-dependent changes in expression of miRNA-582 that might contribute mechanistically to the development of metabolic disorders in the older progeny

    Criteria for the selective use of chest computed tomography in blunt trauma patients

    Get PDF
    Item does not contain fulltextPURPOSE: The purpose of this study was to derive parameters that predict which high-energy blunt trauma patients should undergo computed tomography (CT) for detection of chest injury. METHODS: This observational study prospectively included consecutive patients (>or=16 years old) who underwent multidetector CT of the chest after a high-energy mechanism of blunt trauma in one trauma centre. RESULTS: We included 1,047 patients (median age, 37; 70% male), of whom 508 had chest injuries identified by CT. Using logistic regression, we identified nine predictors of chest injury presence on CT (age >or=55 years, abnormal chest physical examination, altered sensorium, abnormal thoracic spine physical examination, abnormal chest conventional radiography (CR), abnormal thoracic spine CR, abnormal pelvic CR or abdominal ultrasound, base excess or=1 positive predictors, 484 had injury on CT (95% of all 508 patients with injury). Of all 192 patients with no positive predictor, 24 (13%) had chest injury, of whom 4 (2%) had injuries that were considered clinically relevant. CONCLUSION: Omission of CT in patients without any positive predictor could reduce imaging frequency by 18%, while most clinically relevant chest injuries remain adequately detected.1 april 201

    Regulation of LRRK2 Expression Points to a Functional Role in Human Monocyte Maturation

    Get PDF
    Genetic variants of Leucine-Rich Repeat Kinase 2 (LRRK2) are associated with a significantly enhanced risk for Parkinson disease, the second most common human neurodegenerative disorder. Despite major efforts, our understanding of LRRK2 biological function and regulation remains rudimentary. In the present study we analyze LRRK2 mRNA and protein expression in sub-populations of human peripheral blood mononuclear cells (PBMCs). LRRK2 mRNA and protein was found in circulating CD19+ B cells and in CD14+ monocytes, whereas CD4+ and CD8+ T cells were devoid of LRRK2 mRNA. Within CD14+ cells the CD14+CD16+ sub-population of monocytes exhibited high levels of LRRK2 protein, in contrast to CD14+CD16- cells. However both populations expressed LRRK2 mRNA. As CD14+CD16+ cells represent a more mature subset of monocytes, we monitored LRRK2 expression after in vitro treatment with various stress factors known to induce monocyte activation. We found that IFN-γ in particular robustly increased LRRK2 mRNA and protein levels in monocytes concomitant with a shift of CD14+CD16− cells towards CD14+CD16+cells. Interestingly, the recently described LRRK2 inhibitor IN-1 attenuated this shift towards CD14+CD16+ after IFN-γ stimulation. Based on these findings we speculate that LRRK2 might have a role in monocyte maturation. Our results provide further evidence for the emerging role of LRRK2 in immune cells and regulation at the transcriptional and translational level. Our data might also reflect an involvement of peripheral and brain immune cells in the disease course of PD, in line with increasing awareness of the role of the immune system in PD

    A Morphometric Assessment of the Intended Function of Cached Clovis Points

    Get PDF
    A number of functions have been proposed for cached Clovis points. The least complicated hypothesis is that they were intended to arm hunting weapons. It has also been argued that they were produced for use in rituals or in connection with costly signaling displays. Lastly, it has been suggested that some cached Clovis points may have been used as saws. Here we report a study in which we morphometrically compared Clovis points from caches with Clovis points recovered from kill and camp sites to test two predictions of the hypothesis that cached Clovis points were intended to arm hunting weapons: 1) cached points should be the same shape as, but generally larger than, points from kill/camp sites, and 2) cached points and points from kill/camp sites should follow the same allometric trajectory. The results of the analyses are consistent with both predictions and therefore support the hypothesis. A follow-up review of the fit between the results of the analyses and the predictions of the other hypotheses indicates that the analyses support only the hunting equipment hypothesis. We conclude from this that cached Clovis points were likely produced with the intention of using them to arm hunting weapons
    corecore