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ARTICLE OPEN

Genetics and Epigenetics

Effects of maternal diet-induced obesity on metabolic disorders
and age-associated miRNA expression in the liver of male
mouse offspring
Laís Vales Mennitti1,2,5, Asha A. M. Carpenter2,5, Elena Loche2, Lucas C. Pantaleão2, Denise S. Fernandez-Twinn 2,
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Iain Hargreaves4 and Susan E. Ozanne 2✉
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OBJECTIVE: This study investigated the effect of maternal obesity on aged-male offspring liver phenotype and hepatic expression
of a programmed miRNA.
METHODS: A mouse model (C57BL/6 J) of maternal diet-induced obesity was used to investigate fasting-serum metabolites,
hepatic lipid content, steatosis, and relative mRNA levels (RT-PCR) and protein expression (Western blotting) of key components
involved in hepatic and mitochondrial metabolism in 12-month-old offspring. We also measured hepatic lipid peroxidation,
mitochondrial content, fibrosis stage, and apoptosis in the offspring. To investigate potential mechanisms leading to the observed
phenotype, we also measured the expression of miR-582 (a miRNA previously implicated in liver cirrhosis) in 8-week-old and 12-
month-old offspring.
RESULTS: Body weight and composition was similar between 8-week-old offspring, however, 12-month-old offspring from obese
mothers had increased body weight and fat mass (19.5 ± 0.8 g versus 10.4 ± 0.9 g, p < 0.001), as well as elevated serum levels of LDL
and leptin and hepatic lipid content (21.4 ± 2.1 g versus 12.9 ± 1.8 g, p < 0.01). This was accompanied by steatosis, increased Bax/
Bcl-2 ratio, and overexpression of p-SAPK/JNK, Tgfβ1, Map3k14, and Col1a1 in the liver. Decreased levels of Bcl-2, p-AMPKα, total
AMPKα and mitochondrial complexes were also observed. Maternal obesity was associated with increased hepatic miR-582-3p (p <
0.001) and miR-582-5p (p < 0.05). Age was also associated with an increase in both miR-582-3p and miR-582-5p, however, this was
more pronounced in the offspring of obese dams, such that differences were greater in 12-month-old animals (−3p: 7.34 ± 1.35
versus 1.39 ± 0.50, p < 0.0001 and −5p: 4.66 ± 1.16 versus 1.63 ± 0.65, p < 0.05).
CONCLUSION: Our findings demonstrate that maternal diet-induced obesity has detrimental effects on offspring body composition
as well as hepatic phenotype that may be indicative of accelerated-ageing phenotype. These whole-body and cellular phenotypes
were associated with age-dependent changes in expression of miRNA-582 that might contribute mechanistically to the
development of metabolic disorders in the older progeny.

International Journal of Obesity; https://doi.org/10.1038/s41366-021-00985-1

INTRODUCTION
Global incidence of obesity has increased dramatically in all age
groups, including women of reproductive age [1, 2]. A 2019 report
in the United Kingdom revealed that more than half of pregnant
women were overweight or obese [3]. Maternal obesity during
pregnancy has been shown to have long-term “programmed”
effects on the offspring [4, 5]. This involves changes in gene
expression and permanent structural and functional changes in
tissues that make the offspring susceptible to obesity and related
diseases [6–8]. These effects of maternal obesity could be

mediated by the maternal nutritional status and/or dietary
composition [5, 9–11].
Epigenetic processes are thought to be major determinants of

programming mechanisms. The major epigenetic determinants
are DNA methylation, histone modification and noncoding RNAs,
such as microRNAs (miRNAs) [5]. MiRNAs are small molecules that
act to repress messenger RNA (mRNA) translation by binding to
complementary sequences in the 3′-untranslated region (UTRs) of
target mRNAs [12, 13]. It is predicted that at least 30% of all
human genes are regulated by miRNAs and disturbances in
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miRNA expression have been linked to several metabolic
conditions, including type-2 diabetes, cardiovascular disease
(CVD), lipid-homeostasis impairment, and liver steatosis and
fibrosis [14–16]. For example, increased hepatic miR-582 expres-
sion has been reported in response to high-fructose diet
consumption [17] and cirrhotic livers [18]. Growing evidence
indicates that maternal obesity and/or high-fat feeding may
program the expression of different miRNAs in various tissues,
directly affecting the health status of the offspring [19–23].
However, these studies have generally focussed on a single time
point in young-adult life.
The aging process is thought to start before birth and has been

associated with development of programmed phenotypes [24].
Individuals exposed to a suboptimal maternal environment (e.g.,
maternal obesity) during early critical periods are more susceptible
to age-associated diseases in later life, such as obesity, type-2
diabetes, and CVD [24]. Rodríguez-González et al. revealed that
progeny exposed to maternal obesity were predisposed to
premature aging and the progression of nonalcoholic fatty liver
disease (NAFLD) in a sex-specific manner [25]. However, most
published animal studies on the effects of maternal obesity and/or
excessive consumption of high-fat/high-sugar diets during preg-
nancy and lactation focused on young-adult offspring with a limited
number focussing on the reproductive system and cerebrovascu-
lature of aged offspring [26–28]. Therefore, this study aimed to
investigate the liver phenotype of mice at 12 months of age born to
obese dams and to explore if this was related to changes in the
miRNA expression with advancing of age.

MATERIALS AND METHODS
Animals and diet
All animal experiments were conducted at the University of Cambridge
according to the UK Home Office Animals (Scientific Procedures) Act 1986
Amendment Regulations 2012, following ethical review and approval by
the University of Cambridge Animal Welfare and Ethical Review Board. This
study is based on an established model of maternal diet-induced obesity
[29] where female C57BL/6 mice are fed either a standard laboratory chow
(RM1, control diet) [~7% simple sugars, 3% fat, 50% polysaccharide, and
15% protein (wt/wt)] or an obesogenic diet [high-fat diet: ~10% simple
sugars, 20% animal lard, 28% polysaccharide, and 23% protein (wt/wt)
supplemented with sweetened condensed milk (~55% simple sugar, 8%
fat, and 8% protein (wt/wt)) and micronutrient mineral mix] from weaning
(both diets from SDS Diets, UK). Proven breeders [29] were mated when
controls had a total body-fat mass less than 5 g, and the obese exceeded
10 g of total fat mass as assessed by time domain nuclear magnetic
resonance (TD-NMR) (Mini-spec TD-NMR, Bruker UK Ltd). The presence of a
copulatory plug indicated day 1 of pregnancy. Females remained on their
respective diet throughout pregnancy and lactation under standard
conditions of 12-h light and 12-h dark at 23 °C. Assignment of dietary
groups was performed by a technician not involved in the molecular
analysis. To control the nutritional plane, litter size was standardized on
postnatal day 2 to six pups. On day 21, male offspring were weaned onto
and maintained on control diet. For all outcome measurements only one
animal per litter was included in the analysis, therefore, n refers both to the
number of offspring included and the number of litters represented.
Offspring groups are referred to as CC (offspring born to control dams) and
OC (offspring born to obese dams). Body weight of male offspring was
assessed from three weeks, whereas body composition by TD-NMR was
measured from four weeks of age. Both were recorded weekly up to
12 weeks of age and monthly up to 52 weeks of age.
To investigate the contribution of advancing age on the expression of

miR-582 (−3p and −5p), two different time points (eight weeks and
12 months of age) were included for this measurement. Mice at eight
weeks of age are considered young adults (sexual maturity is attained by
approximately six weeks of age), and at 12 months of age, they are
deemed older adults (middle age). The average life span of C57/Bl6
laboratory mice is about 24 months of age [30]. At 12 months of age, blood
glucose was measured using a glucometer (AlphaTRAK II, Abbott Logistics
BV, NL). Animals were killed by rising CO2 concentration. Various tissues
were collected at eight weeks of age (n= 8 for each experimental group);
however, only livers and body composition were analyzed for this study.

For 12-month-old offspring (n= 9 for each experimental group), blood was
collected by cardiac puncture for serum-metabolite analysis. Adipose-
tissue depots (intra-abdominal, retroperitoneal, and epididymal) and liver
were dissected, weighed, snap-frozen, and stored at −80 °C until use.

Serum analysis
Insulin and leptin concentrations were measured using enzyme-linked
immunosorbent assay (ELISA) (Crystal Chem, USA). Total cholesterol and
triglycerides (TG) were measured using a Dimension RxL analyzer (Siemens
Healthcare Limited, UK). HDL cholesterol was measured using a homo-
geneous accelerator-selective detergent assay with a Dimension RxL
analyzer (Siemens Healthcare Limited, UK). LDL cholesterol was calculated
using the Friedwald equation [31]. Free fatty acids were measured using
the Roche Free Fatty Acid Half-Micro Kit (Roche Diagnostics Limited, UK).
Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) was
calculated using the formula: HOMA-IR= [fasting insulin (mU L−1) × fasting
glucose (mmol L−1)]/22.5.

Glucose-tolerance test (GTT)
At 12 months of age, offspring were fasted (16 h) and tail blood glucose
measured (AlphaTRAK II, Abbott Logistics BV, NL). Animals were injected
intraperitoneally with a 10% (wt/vol.) glucose solution (1 g/kg body
weight) and tail blood glucose measured 15, 30, 60, 120, and 180min after
injection. Area under the curve (AUC) was calculated using the trapezoids
rule (GraphPad Prism 7.02 for Windows, GraphPad Software, USA).

Quantification of liver lipid content and histological analysis
Accumulation of hepatic lipid was determined using a modified Folch
method [32]. For histological analysis, liver tissue was fixed in 10% neutral-
buffered formalin for 48 hours before processing and paraffin embedding.
For evaluation of hepatic steatosis, sections (7 µm) were stained with
hematoxylin and eosin (H&E) and images were captured using a ZEISS Axio
Scan.Z1 slide scanner. Steatosis was graded by a histopathologist blinded
to the offspring group, and scored based on the percentage of
hepatocytes showing steatosis (macro- or microvesicular) into four
different categories: absent= <5% (grade 0), mild= <30% (grade 1),
moderate= <60% (grade 2), and severe= >60% (grade 3) [33].
For quantification of collagen deposition, sections (5 µm) were stained

with Picrosirius Red and images were captured using a ZEISS Axio Scan.
Z1 slide scanner. Collagen staining was calculated by converting images to
an L*a*b stack and analyzing red stain on dimension “a” using ImageJ
software (version 1.52 g, National Institute of Health, USA). Five fields
per section were analyzed and the average collagen staining recorded.
These sections were also used to fibrosis-stage assessment (by a
histopathologist blinded to the offspring group) according to the
classification described by Kleiner et al. [34] as follows: absent= no
increase in fibrosis, mild= centrilobular/pericellular fibrosis only, moder-
ate= centrilobular+ portal fibrosis, and severe= bridging fibrosis.

TUNEL assay
Liver apoptosis was assessed by TUNEL assay using paraffin-embedded
sections. An in situ apoptosis detection kit (#MK500, Takara Bio Inc., Japan)
was used to detect DNA fragments generated by apoptosis as per the
manufacturer’s instructions. Images were captured using a ZEISS Axio Scan.
Z1 slide scanner. TUNEL-positive cells were detected based on the average
DAB (brown) staining within each cell nuclei using an embedded algorithm
in QuPath v0.2.3 [35]. The percentage of positive cells was calculated by
comparing the number of DAB-stained nuclei to the total nuclei number
(hematoxylin-stained).

Total RNA isolation
Total RNA was isolated from frozen liver (miRNeasy Mini Kit, Qiagen, UK)
and quantified using a NanoDrop spectrophotometer (Thermo Scientific,
USA). RNA quality and integrity were estimated by 260/280-nm and 260/
230-nm ratios, showing values between 1.8–2.0 and 1.8–2.2, respectively.

MiRNA expression
Complementary DNA (cDNA) was generated from total RNA (TaqmanTM

MicroRNA Reverse Transcription Kit, Applied Biosystems, UK) and
TaqmanTM MicroRNA assays (Applied Biosystems, UK). Quantitative PCR
(qPCR) was performed using a TaqmanTM 2x Universal PCR Master Mix No
AmpEraseTM UNG (Applied Biosystems, UK) on a QuantStudio 7 Flex
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Real-Time PCR System (Applied Biosystems, UK) with miR-582-3p (Assay ID:
472692_mat) and miR-582-5p (Assay ID: 471065_mat) probes (both
Applied Biosystems, UK). MiRNA-expression assays were performed in
duplicate, and data normalized to the geomean of miR-25-3p (hsa-miR-25
Assay ID: 000403, Applied Biosystems, UK), which displayed no differences
between groups.

mRNA-level assessment
Relative mRNA levels of genes encoding proteins involved in the fibrotic
process, apoptosis pathway, and mitochondrial function were determined by
qPCR. cDNA was synthesized using a High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, UK) and qPCR performed in duplicate
using Sybr Green PCR Master Mix (Applied Biosystems, UK) on a QuantStudio
7 Flex Real-Time PCR System (Applied Biosystems, UK). Target-gene
expression was normalized to the geometric mean of housekeeping genes
Ppia and Hprt, as their expressions were stable between groups. Primers
sequences are shown in Table 1. For measurement of both mRNA and miRNA
levels, the results were expressed as the relative increase according to the
comparative cycle-threshold method (2−ΔΔCt) [36].

Protein extraction and Western blotting
Hepatic expression of proteins implicated in fibrosis, apoptosis, mitochon-
drial function, and oxidative stress was assessed by western blotting [20].
Each membrane was blotted with the respective primary antibody [p-
SAPK/JNK (Thr183/Tyr185) (#9251, Cell Signaling Technology, USA), Bax
(#2772, Cell Signaling Technology, USA), Bcl-2 (#2876, Cell Signaling
Technology, MA, USA), Total OXPHOS (ab110413, Abcam, UK), Citrate
Synthase (CS; Cat. 16131-1-AP, Proteintech, UK), Catalase (ab1877, Abcam,
UK), MnSOD (06-984, Merck Millipore, UK), p-AMPKα (Thr172) (#2535, Cell
Signaling Technology, USA), and AMPKα1 (ab3759, Abcam, UK)]. Proteins
were detected with horseradish peroxidase-conjugated anti-rabbit or anti-
mouse secondary antibody (Jackson Immuno Research, UK). Detection was
performed with Super Signal West Pico Chemiluminescent substrate
(Thermo Scientific, UK) using an ImageQuantTM LAS 4000 (GE Healthcare
Life Sciences, UK). Band intensities were quantified by optical densitometry
(Scion Image-Release Beta 3b, NIH, USA). To confirm equal protein loading,
membranes were stripped (Restore™Western Blot Stripping Buffer, Thermo
Scientific, UK) and reblotted with an anti-GAPDH antibody (#2118, Cell
Signaling Technology, USA). Western blotting data were calculated relative
to the CC group, which were defined as 100 percent.

Relative mitochondrial DNA content
Copy number of mitochondrial DNA is one biomarker of mitochondrial
dysfunction [37]. Total DNA was extracted from liver (DNeasy Blood &
Tissue kit, Qiagen, UK) and total double-stranded DNA concentrations
determined (Quant-iTTM PicoGreen dsDNA assay kit, Invitrogen, UK).
Mitochondrial DNA content was determined by the ratio between a
mitochondrial (Nd5) and nuclear (Rplp0) gene following qPCR. Primer
sequences are in Table 1. The results were expressed using the following
equations: ΔCT= (nuclear DNA CT - mitochondrial DNA CT) and relative
mitochondrial DNA content= 2 x 2 ΔCT [38].

Determination of mitochondrial respiratory chain (MRC)
enzyme activities
Hepatic MRC enzyme activities were evaluated spectrophotometrically as
described previously: complex I [39], complex II/III [40], and complex IV
[41]. Complex activities were expressed as a ratio to CS [42] to correct for
mitochondrial enrichment of the samples [43].

Malondialdehyde (MDA) concentration
Malondialdehyde, a marker for lipid peroxidation, was quantified
fluorometrically (Ex/Em=532/553 nm) (ab118970, Abcam, UK) and normal-
ized to protein content of the sample.

Statistical analysis
Power calculations for determining adequate sample size were based on
published results from our group [32], and in order to detect a 20%
difference in means with a power (95% confidence and alpha= 0.05) of 0.9,
the sample size required per group was determined to be n= 9 dams per
group (mother is the statistical unit). Shapiro–Wilk quality test was used to
assess the normality of the data. Grubbs’ test was performed and significant
outlier samples were removed when the alpha value is equal to 0.05 [44].
Normally distributed data were analyzed using an unpaired two-tailed
student’s t test. Data with nonnormal distribution were analyzed by the two-
tailed Mann–Whitney U test or by the two-tailed Kolmogorov–Smirnov test.
Two-way analysis of variance (ANOVA) was performed to estimate the effect
of two independent variables (maternal diet and offspring age) followed by
Bonferroni post hoc test. A chi-square one-sided test was used to analyze
the binary data generated from an assessment of fibrosis by a pathologist.
Pearson (normal distribution) or Spearman (nonnormal distribution)
correlation coefficients were also determined. All statistical analyses were

Table 1. Primer sequences used in the qPCR.

Target genes Forward sequence (5′-3′) Reverse sequence (5′-3′)

Col1a1 GAGAGGTGAACAAGGTCCCG AAACCTCTCTCGCCTCTTGC

Col3a1 TGACTGTCCCACGTAAGCAC GAGGGCCATAGCTGAACTGA

Col4a1 GGCCCTTCATTAGCAGGTGT GTGAGGACCAACCGTTAGGG

Map3k14 TGTCTCAAGATTGCCAGCGA ACTTCCTGTAGTGCCTTGCC

Tgfβ1 CTGCTGACCCCCACTGATAC GGGCTGATCCCGTTGATTTC

Ndufb8 GGTATGGCGACTACCCGATG GTACTGCTTCGGACCCACAG

Sdhb GAGTCGGCCTGCAGTTTCA GCCAGAGTATTGCCTCCGTT

Uqcrc2 CCGGGTCCTTCTCGAGATTTT TGCTTCAATCCCACGGGTTA

Co1 CCCAGATATAGCATTCCCACG ACTGTTCATCCTGTTCCTGC

Co2 ATAACCGAGTCGTTCTGCCAAT TTTCAGAGCATTGGCCATAGAA

Atp5a1 CCTTGACCTTCCTTTGCGCT CATTTTTGGAGACCAGTCCCG

Bax GAGCTGCAGAGGATGATTGC AAGTAGAAGAGGGCAACCACG

Bcl-2 GCGTCAACAGGGAGATGTCA TTCCACAAAGGCATCCCAGC

Ampkα1 TTCGGGAAAGTGAAGGTGGG AGATGGTGTACTGATGACCTGG

Ampkα2 GGAGAACACCAATTGACAGGC TCTTCAACCCGCCCATGTT

Pde4d TGTGACATTTTCCAGAATCTGAC AGGTTCATGTGCTTCGAC

Nd5 ACGAAAATGACCCAGACCTC GAGATGACAAATCCTGCAAAGATG

Rplp0 AGATTCGGGATATGCTGTTGGC TCGGGTCCTAGACCAGTGTTC

Housekeepers

Hprt GGTTAAGCAGTACAGCCCCA GTCAAGGGCATATCCAACAACA

Ppia GTCCAGGAATGGCAAGACCA GGGTAAAATGCCCGCAAGTC
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performed using GraphPad Prism 7.02 for Windows (GraphPad Software,
USA). Data are presented as mean ± standard error of the mean (SEM) and
differences considered significant when p < 0.05.

RESULTS
Body weight and composition
In both groups, body weight and body-fat content increased with
age (effect of age: p < 0.0001), however, the effect was greater in the
offspring of obese dams (interaction between maternal diet and
age: p < 0.0001) (Fig. 1a). Therefore, at 12 months of age, offspring of
obese dams were significantly heavier (CC 39.1 ± 1.4 g versus OC
48.8 ± 1.5 g, p < 0.0001; CC: n= 9 and OC: n= 8) and fatter (CC
10.4 ± 0.9 g versus OC 19.5 ± 0.8 g, p < 0.0001; CC: n= 9 and OC: n=
8) than control offspring. There was a small reduction in the absolute
lean mass from week 7 to week 20 in the OC group; however, from
24 weeks of age until the end of experimental period, the lean mass
was similar between groups (Fig. 1b). The difference in fat mass
between the groups became more marked as the animals aged (Fig.
1c). There was a depot-specific difference in fat deposits, with the
greatest difference observed in the intra-abdominal depot of the OC
group at 12 months of age (Fig. 1d).

Fasting-serum metabolites, HOMA-IR and GTT (AUC) in
12-month-old offspring
The level of circulating TG was significantly lower in the OC group
compared with the CC group (Table 2). Additionally, offspring
from obese dams exhibited increased serum concentrations of
LDL and leptin. There were no significant differences between

offspring groups for total cholesterol, HDL, FFA, insulin, fasting
glucose, HOMA-IR, or glucose tolerance (Table 2).

Liver weight, hepatic lipid content, and steatosis grade
in 12-month-old offspring
Absolute liver weight was increased in OC offspring compared with
CC offspring at 12 months of age (CC 1.8 ± 0.2 g versus OC 2.9 ±
0.3 g, p < 0.01; CC: n= 9 and OC: n= 9). The increase remained
when liver weight was presented as percentage of body weight (CC
4.36 ± 0.22% versus OC 6.36 ± 0.28%, p < 0.0001; CC: n= 9 and OC:
n= 8). The offspring of obese dams showed elevated total hepatic
lipid content at 12 months of age (Fig. 1e). Increased hepatic lipid
content was also apparent when the results were expressed as
percentage of liver weight (Fig. 1f). Blinded histopathological
assessment revealed that 56% of offspring from obese dams
developed severe steatosis at 12 months of age, while only 25% of
control offspring had this degree of steatosis. Likewise, the
percentages of animals with moderate steatosis were also greater
in the OC group (22% versus 13%). Over half (62%) of control
animals (CC) had absent/mild steatosis, whereas only 22% offspring
of obese (OC) dams had absent/mild steatosis (Figs. 1g and 1h).

AMP-activated protein-kinase α (AMPKα) expression in the
liver of 12-month-old offspring
We observed significant reductions in both phosphorylation
(Thr172) and total protein levels of AMPKα in the OC group (Fig.
2a). The differences in protein expression were not accompanied
by any differences in relative mRNA levels of Ampkα1 (CC 1.00 ±
0.04 versus OC 1.00 ± 0.06; CC: n= 9 and OC: n= 9) or Ampkα2 (CC

Fig. 1 Body weight, body composition, hepatic lipid content and steatosis grades in 12-month-old offspring. Average body weight (a),
average absolute lean mass (b), average absolute fat mass (c), fat mass of intra-abdominal, retroperitoneal and epididymal fat depots (d), total
hepatic lipid content (e), hepatic lipid content as percentage of liver weight (f), representative liver sections stained with H&E and percentage
of steatosis grades in the CC group (g) and OC group (h) at 12 months of age. CC 12m: mother received control diet and offspring-fed control
diet after weaning up to 52 weeks of age; OC 12m: mother received obesogenic diet and offspring-fed control diet after weaning up to
52 weeks of age. Values are presented as means ± SEM; CC 12m: n= 7–13 and OC 12m: n= 8–9 animals from independent litters for each
group. Data were analyzed by unpaired student’s t test or Mann–Whitney U test. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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1.00 ± 0.04 versus OC 1.10 ± 0.05; CC: n= 9 and OC: n= 9).
Additionally, liver lipid content strongly negatively correlated
with p-AMPKα (r=−0.7375, p= 0.0005), total AMPKα (r=
−0.5974, p= 0.0088), and AMPKα activity (r=−0.6697, p=
0.0033) (Supplementary Fig. 1a–c, respectively).

Mitochondrial phenotype in the liver of 12-month-old
offspring
There was a significant reduction in protein expression of OXPHOS
MRC complexes I (NDUFB8), III (UQCRC2), IV (MTCO1), and V
(ATP5A) and an increase in hepatic protein levels of citrate
synthase in the OC group (Figs. 2b and 2c). In contrast, the OC
group had increased mRNA levels of Uqcrc2 (complex III: CC 1.00 ±
0.03 versus OC 1.12 ± 0.05, p < 0.05, CC: n= 9 and OC: n= 9) and
Atp5a1 (complex V: CC 1.00 ± 0.04 versus OC 1.12 ± 0.04, p < 0.05;
CC: n= 9 and OC: n= 9). mRNA expression of Ndufb8 (complex I:
CC 1.00 ± 0.02 versus OC 1.01 ± 0.03, CC: n= 8 and OC: n= 9),
Sdhb (complex II: CC 0.93 ± 0.04 versus OC 1.00 ± 0.04, CC: n= 9
and OC: n= 9), and Co1 (complex IV: CC 1.01 ± 0.08 versus OC
1.32 ± 0.20; CC: n= 9 and OC: n= 9) and Co2 (complex IV: CC

1.06 ± 0.13 versus OC 1.00 ± 0.12, CC: n= 9 and OC: n= 9) was not
different between the groups. There was no change in the relative
mitochondrial DNA content (CC 42.7 ± 2.7 versus OC 41.1 ± 2.0, CC:
n= 9 and OC: n= 9) or in the activity of MRC complexes (complex
I: CC 0.87 ± 0.05 versus OC 0.88 ± 0.05 relative to CS activity; CC: n
= 9 and OC: n= 9; complexes II–III: CC 0.12 ± 0.01 versus OC
0.15 ± 0.02 relative to CS activity, CC: n= 9 and OC: n= 9; complex
IV: CC 0.08 ± 0.01 versus OC 0.08 ± 0.01 k/nmol, CC: n= 9 and OC:
n= 9) between groups.
We also examined hepatic lipid peroxidation and oxidative

enzyme. However, there were no differences in MDA concentra-
tion (CC 0.20 ± 0.01 versus OC 0.22 ± 0.01 nmol/mg of protein, CC:
n= 9 and OC: n= 9) or in protein levels of catalase (CC 100 ± 12
versus OC 92 ± 11, CC: n= 9 and OC: n= 9) or MnSOD (CC 100 ± 9
versus OC 99 ± 13, CC: n= 8 and OC: n= 9) between groups.

Hepatic fibrosis and apoptosis in 12-month-old offspring
To investigate the development of fibrosis in offspring liver at
12 months of age, quantification of collagen accumulation
(Supplementary Fig. 2a and 2b) and a blinded histopathologic
evaluation of fibrosis were carried out. We did not observe
extensive collagen staining in either experimental group, but OC
offspring exhibited a borderline significant (p= 0.0568) increase in
hepatic collagen deposition (Fig. 3a). Consistent with low levels of
fibrosis, histological scoring revealed no moderate or severe fibrosis
in any livers of either group. A centrilobular/pericellular fibrosis
(classified formally as mild) was detected in 3/9 animals from the
OC group, while all control samples were deemed as fibrosis-absent
(p < 0.05, CC: n= 7 and OC: n= 9). Relative mRNA levels of Col1a1
were significantly (p < 0.05) increased and Col4a1 was borderline
significantly increased (p= 0.0542) in the obese offspring (Fig. 3b).
Despite displaying a similar pattern, Col3a1 gene expression was
not significantly changed between experimental groups (Fig. 3b).
There were increased levels of phosphorylated c-Jun-N-terminal
kinase (p-SAPK/JNK) (Figs. 3c and 3d), as well as relative mRNA
levels of transforming growth factor-β (Tgfβ1) (CC 1.01 ± 0.07 versus
OC 1.26 ± 0.09, p < 0.05; CC: n= 9 and OC: n= 9) and NF-κB-
inducing kinase (Map3k14) (CC 1.02 ± 0.08 versus OC 1.38 ± 0.09,
p < 0.01; CC: n= 9 and OC: n= 9) in the OC group. We also
investigated some key mediators of the apoptotic pathway.
Offspring from obese dams showed decreased protein expression
of Bcl-2 (Figs. 3c and 3d) and an increased Bax/Bcl-2 ratio (CC
1.02 ± 0.07 versus OC 1.64 ± 0.24, p < 0.05; CC: n= 9 and OC: n= 8).
Concomitantly, there was a negative correlation between Bcl-2
protein levels and hepatic collagen deposition (r=−0.6436, p=
0.0053) (Supplementary Fig. 1d). Protein levels of Bax (Figs. 3c and
3d) and transcript levels of both Bax (CC 1.00 ± 0.03 versus OC
1.08 ± 0.03; CC: n= 9 and OC: n= 9) and Bcl-2 (CC 1.03 ± 0.09 versus
OC 1.18 ± 0.12; CC: n= 9 and OC: n= 9) were not significantly
different between CC and OC groups. The percentage of TUNEL-

Fig. 2 AMPKα protein expression and mitochondrial phenotype in the liver of 12-month-old offspring. Protein levels of p-AMPKα (Thr172)
and total AMPKα (a), representative images of protein expression (b), and relative protein expression of citrate synthase and mitochondrial
OXPHOS complexes (c) in the liver of the offspring at 12 months of age. CC 12m: mother received control diet and offspring-fed control diet
after weaning up to 52 weeks of age; OC 12m: mother received obesogenic diet and offspring-fed control diet after weaning up to 52 weeks
of age. Values are presented as means ± SEM; CC 12m: n= 9 and OC 12m: n= 9 animals from independent litters for each group. Data were
analyzed by unpaired student’s t test. *p < 0.05, **p < 0.01, and ***p < 0.001.

Table 2. Fasting serum metabolites, HOMA-IR and GTT (AUC) in the
offspring at 12 months of age.

CC 12m OC 12m p value

Triglycerides (mmol L−1) 1.38 ± 0.13 1.06 ± 0.07* 0.0448

Total cholesterol (mmol L−1) 3.20 ± 0.26 4.12 ± 0.3 1 0.0720

HDL (mmol L−1) 1.65 ± 0.13 1.93 ± 0.11 0.2224

LDL (mmol L−1) 0.92 ± 0.15 1.71 ± 0.23* 0.0119

Free fatty acids (µmol L−1) 953 ± 87 798 ± 48 0.1366

Insulin (pmol L−1) 380 ± 55 507 ± 85 0.2266

Leptin (pmol L−1) 4097 ± 332 7181 ± 723** 0.0017

Fasting glucose (mmol L−1) 9.4 ± 0.6 10.0 ± 0.8 0.5153

HOMA-IR 0.13 ± 0.02 0.19 ± 0.03 0.1425

GTT (AUC) 29.7 ± 2.5 29.9 ± 0.8 0.9510

AUC Area Under the Curve, HDL high-density lipoprotein, HOMA-IR
Homeostatic Model Assessment for Insulin Resistance, LDL low-density
lipoprotein, GTT Glucose Tolerance Test. CC 12m: mother received control
diet and offspring fed control diet after weaning up to 52 weeks of age; OC
12m: mother received obesogenic diet and offspring fed control diet after
weaning up to 52 weeks of age. Values are presented as means ± SEM. CC
12m: n= 8–9 and OC 12m: n= 7–9 from independent litters for each
group. Data were analyzed by unpaired student’s t test or Mann–Whitney U
test. *p < 0.05; **p < 0.01.
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positive cells was low in both groups and not significantly different
(p= 0.0807) (Fig. 3e).

MiR-582 expression in the liver of 12-month-old offspring
Maternal diet-induced obesity during pregnancy and lactation
resulted in increased expression of both miR-582-3p and miR-
582-5p in the older-programmed offspring (Fig. 4a). There was
also a significant effect of age to increase both miR-582-3p and
miR-582-5p. However, in both cases, the impact of age was
greater in the offspring of obese dams compared with controls,
meaning that the greatest effect of maternal diet was at
12 months of age when hepatic expression of miR-582-3p and
miR-582-5p was substantially higher in the offspring of the
obese dams (Fig. 4a). MiR-582 is intragenic, located within the
gene phosphodiesterase 4D (Pde4d). Similarly, to the miRNA
expression, expression of Pde4d was increased in the 12-month-
old offspring from obese dams (Fig. 4b). However, the
magnitude of increase in the host mRNA was much smaller
than that of the miRNAs. Both strands of mmu-miR-582 (-3p and
-5p) were positively correlated with hepatic lipid accumulation
(r= 0.7549, p= 0.0007 and r= 0.7420, p= 0.0004, respectively)
(Supplementary Fig. 1e and 1f).

DISCUSSION
Our study revealed that maternal diet-induced obesity caused by
consumption of a high-fat/high-sugar diet adversely programs
growth trajectory, adiposity, hepatic lipid accumulation, and
moderate/severe steatosis in 12-month-old offspring fed a control
diet from weaning. Our experimental design does not allow for
the differentiation of effects resulting from maternal obesity per se
and those caused by maternal consumption of a high-fat/high-
sugar diet. However, in the human situation, these often occur in
parallel. Our findings highlight the importance of advancing age in
the development of programmed phenotype, with longitudinal
data demonstrating that the effects on body weight and body
composition become more pronounced with age. Consistent with
this observation, there is an interaction between maternal diet
and age on expression of miR-582 with the effect of age being
exaggerated in the male offspring exposed to maternal obesity.
These observations highlight the importance of studying the
impact of programming across the life course.
Previous studies from our research group using the same model

demonstrated that chow-fed offspring have similar body weights
up to 12 weeks of age [22, 45–47]. In the current study, we
observed a significant impact of age, with the offspring of obese

Fig. 3 Hepatic fibrosis and apoptosis in 12-month-old offspring. Quantification of Picrosirius red staining (a), relative mRNA levels of Col1a1,
Col3a1 and Col4a1 (b), representative images of protein expression (c), relative protein expression of p-SAPK/JNK, Bax and Bcl-2 (d), and
percentage of TUNEL-positive cells (e) in the liver of the offspring at 12 months of age. CC 12m: mother received control diet and offspring-
fed control diet after weaning up to 52 weeks of age; OC 12m: mother received obesogenic diet and offspring fed control diet after weaning
up to 52 weeks of age. Values are presented as means ± SEM; CC 12m: n= 7–9 and OC 12m: n= 8–9 animals from independent litters for
each group. Data were analyzed by unpaired student’s t test or Mann–Whitney U test or Kolmogorov–Smirnov test. *p < 0.05 and **p < 0.01.
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dams displaying increased body weight and fat mass from around
20 weeks of age and that the magnitude of effect increased up to
12 months of age. Consistent with these findings, Rodríguez-
González et al. [25] demonstrated that postnatal day 450 was the
first age at which body weight and adiposity index were greater in
male-rat offspring of a similar maternal obesity model. In addition
to the effects on adiposity, the current study also showed that
programmed changes in metabolites were associated with
advancing age. Previous studies on 8-week-old mice showed no
effects of maternal obesogenic diets on serum LDL cholesterol
and leptin levels in offspring of obese dams [47]. However, both
were elevated as a consequence of maternal obesity at 12 months
of age. Persistent elevation in circulating LDL increases the risk of
CVD development and LDL-particle concentration has been
positively associated with NAFLD [48, 49]. Therefore, high LDL
concentration observed in the older offspring may contribute to
programming of cardiovascular and hepatic diseases.
NAFLD refers to excessive intrahepatocellular fat deposition and

is considered to be the liver manifestation of metabolic syndrome
[50]. NAFLD is one of the most prevalent liver diseases in the
world and evidence suggests that an adverse early life environ-
ment can program offspring susceptibility to the development
and progression of this condition [9]. In the current study,
increased hepatic lipid content, liver weight, and percentage of
animals with severe-to-moderate steatosis (78% in total) were
accompanied by increased body weight and adiposity in the older
progeny exposed to a maternal obesogenic environment, indicat-
ing the presence of NAFLD independently of changes in the
fasting concentrations of FFA, total cholesterol, HDL, insulin, or
glucose tolerance. Despite increased hepatic lipid accumulation,
offspring of obese dams had reduced serum levels of circulating
triglycerides. The underlying mechanisms are unknown but may
indicate an inability to export triglycerides from the liver into the
circulation or an enhanced uptake of triglycerides by adipose
tissue. Similar observations have been made in other mouse
models of nonalcoholic steatohepatitis, such as those using a
choline-deficient L-amino acid-defined high-fat diet [51].
Given that strong negative correlations were found between

hepatic p-AMPKα protein levels and liver lipid content, as well as
between the p-AMPKα/AMPKα ratio and liver lipid content, we
speculate that the hepatic fat accumulation observed in these
offspring can be partially explained by defects in AMPKα activation
and activity. It has been shown previously that AMPK activation
declines with obesity [52] and aging [53], which is consistent with the
offspring of obese dams displaying an obese, prematurely metabolic
aging phenotype. Furthermore, it has been reported that exogenous

AMPK activation can be a viable strategy for the treatment of obesity
and NAFLD [54]. In the current study, the absence of differences in
the relative mRNA levels of Ampkα1 or Ampkα2 may suggest a post-
transcriptional mechanism mediating the expression of AMPK.
Mitochondria dysfunction has been implicated in developmen-

tal programming and age-related diseases [55–57]. Previous
studies showed decreased protein levels of mitochondrial
respiratory chain complex II, complex III, and complex V in the
liver [57] and skeletal muscle [55] of young offspring (at weaning
[57] and eight weeks of age [55]) born to obese dams. In the
current study, we demonstrated reductions in a number of
proteins within these complexes; however, there were no
differences in mitochondrial copy number or enzyme activity.
Protein subunits NDUFB8 (complex I) [58] and UQCRC2 (complex
III) [59] are structural subunits without involvement in the catalytic
activity. Therefore, although there was a significant decrease in
protein levels of NDUFB8 and UQCRC2, it may not impact on the
MRC enzyme activity but impacts on other aspects of mitochon-
drial biology. Our findings also revealed that increased mRNA
levels of Uqcrc2 and Atp5a1 may indicate a compensatory
response to the reduction in the protein expression of these
MRC complexes in the obese offspring. In parallel, the absence of
significant changes in the mRNA levels of Ndufb8, Co1, and Co2
again suggests that differences in protein expression may arise
from post-transcriptional mechanisms.
The spectrum of NAFLD in humans ranges from nonalcoholic

fatty liver (NAFL, simple hepatic steatosis) to NASH (severe form
of the disease). NAFL can progress to NASH, which is
characterized by hepatocellular injury and inflammation with
or without fibrosis [50]. Liver fibrosis results from an excessive
accumulation of collagen and other extracellular-matrix proteins
in the affected tissue [60]. Mice models generally do not develop
NASH and moderate or severe fibrosis is rarely reported [61],
consistent with the absence of moderate/severe fibrosis in the
current study. However, we demonstrated increased collagen
deposition, gene overexpression of Col1a1, and mild centrilob-
ular/pericellular fibrosis in some animals, indicating that
maternal diet-induced obesity leads to increased risk of liver
fibrosis in the older offspring at 12 months of age, which could
progress if the animals were aged further. Leptin, obesity, and
TGFβ play a crucial role in the profibrogenic responses within
the liver [60, 62, 63]. Leptin is thought to upregulate the
expression of TGFβ, which in turn activates JNK, leading to
fibrosis and apoptosis [62, 63]. Consistent with this, we revealed
increased circulating leptin and increased hepatic TGFβ as well
as increased phosphorylated JNK.

Fig. 4 Age-related changes in the miR-582 hepatic expression in the 8-week-old and 12-month-old offspring. Relative expressions of miR-
582-3p and miR-582-5p in the liver of the offspring at eight weeks and 12 months of age (a) and relative mRNA expression of
phosphodiesterase 4D in the liver of the offspring at 12 months of age (b). CC 8w: mother received control diet and offspring-fed control diet
after weaning up to eight weeks of age; OC 8w: mother received obesogenic diet and offspring-fed control diet after weaning up to eight
weeks of age. CC 12m: mother received control diet and offspring-fed control diet after weaning up to 52 weeks of age; OC 12m: mother
received obesogenic diet and offspring-fed control diet after weaning up to 52 weeks of age. Values are presented as means ± SEM; CC 8w:
n= 8 and OC 8w: n= 8; CC 12m: n= 8–9 and OC 12m: n= 9 animals from independent litters for each group. Data were analyzed by
Mann–Whitney U test or two-way ANOVA. *p < 0.05 and ****p < 0.0001.
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Apoptosis is considered a key mediator of NAFLD progression
and the degree of apoptosis is inversely associated with the level
of Bcl-2 [64, 65]. The Bcl-2 family includes three groups: anti-
apoptotic proteins (Bcl-2), pro-apoptotic pore formers (Bax) and
pro-apoptotic BH3-only proteins [66]. The balance between anti-
and pro-apoptotic members is crucial [66] and a high Bax/Bcl-2
ratio, as observed in the livers from the offspring of obese dams,
suggests a pro-apoptotic phenotype [67]. Although we detected
decreased protein level of Bcl-2 (an important apoptosis-
regulatory protein) and high Bax/Bcl-2 ratio in the animals from
OC group, the percentage of TUNEL-positive cells was low and did
not differ between groups at 12 months of age. These findings
may suggest that hepatic cells from obese offspring are more
susceptible to apoptotic stimuli; however, the time point
investigated was too early to detect differences in the number
of apoptotic cells by TUNEL assay. Furthermore, the strong
negative correlation between Bcl-2 protein expression and
collagen deposition in the liver supports an interaction between
liver fibrosis and apoptosis.
We demonstrated that maternal diet-induced obesity leads to

differences in hepatic expression of miR-582 (-3p and -5p) in the
12-month-old offspring of obese dams. This miRNA has not
previously been implicated in the programming of liver, but has
been shown to be increased in response to high-fructose-diet
consumption [17] and in cirrhotic livers [18]. It has also been
shown to be increased in the cardiac left ventricle of gestational
protein-restricted offspring at 12 days of age [68] and in maternal
plasma from women with preeclampsia [69]. In the current study,
we demonstrated an impact of advancing age on hepatic miR-
582-3p and miR-582-5p with levels increasing between offspring
at eight weeks (young adult just after sexual maturity) and
12 months (older adults at middle age). However, the magnitude
of the increase was much more marked in the offspring of obese
dams compared with control offspring. This indicates that
disturbances in the expression of these miRNAs are also consistent
with an accelerated metabolic aging process triggered by a
maternal obesogenic environment prior to and during pregnancy
and lactation.
There are some limitations to acknowledge in the current study.

First, there is growing evidence that male and female fetuses
respond differently to a suboptimal in utero environment, leading
to sexually dimorphic programmed responses [70]. In the current
study, only males were included and, therefore, it remains
unknown if the changes observed would also occur in female
offspring. Second, although studying mice at an older age
(12 months) than most other programming studies, this still
represents approximately half of the mouse lifespan. Therefore,
further studies are required to establish if age-associated changes
become even great as the animals near their expected lifespan.
In conclusion, we demonstrate that maternal diet-induced

obesity unfavorably modulates body composition and fatty-liver
phenotype in exposed offspring that is exaggerated with age. This
is accompanied by an accelerated age-associated increase in
hepatic levels of miR-582, which may contribute mechanistically to
the development of hepatic fatty liver. Our findings support the
hypothesis that accelerated metabolic aging may contribute to
the development of programmed phenotypes and highlights the
possibility that there may be a critical time for intervention after
the suboptimal exposure and prior to the development of
programmed metabolic dysfunction.
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