4,876 research outputs found

    On the mean field dynamo with Hall effect

    Full text link
    We study in the present paper how Hall effect modifies the quenching process of the electromotive force (e.m.f.) in Mean Field Dynamo (MFD) theories. We write down the evolution equations for the e.m.f. and for the large and small scale magnetic helicity, treat Hall effect as a perturbation and integrate the resulting equations assuming boundary conditions such that the total divergencies vanish. For force-free large scale magnetic fields, Hall effect acts by coupling the small scale velocity and magnetic fields. For the range of parameters considered, the overall effect is a stronger quenching of the e.m.f. than in standard MHD and a damping of the inverse cascade of magnetic helicity. In astrophysical environments characterized by the parameters considered here, Hall effect would produce an earlier quenching of the e.m.f. and consequently a weaker large scale magnetic field.Comment: 8 pages, 4 figures. Accepted by A&

    Importance of an Astrophysical Perspective for Textbook Relativity

    Get PDF
    The importance of a teaching a clear definition of the ``observer'' in special relativity is highlighted using a simple astrophysical example from the exciting current research area of ``Gamma-Ray Burst'' astrophysics. The example shows that a source moving relativistically toward a single observer at rest exhibits a time ``contraction'' rather than a ``dilation'' because the light travel time between the source and observer decreases with time. Astrophysical applications of special relativity complement idealized examples with real applications and very effectively exemplify the role of a finite light travel time.Comment: 5 pages TeX, European Journal of Physics, in pres

    Tides and currents in the south of the Arabian Gulf

    No full text

    Asymptotics of capture zone distributions in a fragmentation-based model of submonolayer deposition

    Get PDF
    We consider the asymptotics of the distribution of the capture zones associated with the islands nucleated during submonolayer deposition onto a one-dimensional substrate. We use a convolution of the distribution of inter-island gaps, the asymptotics of which is known for a class of nucleation models, to derive the asymptotics for the capture zones. The results are in broad agreement with published Monte Carlo simulation data (O'Neill et al., 2012) [13]

    Accretion Disks and Dynamos: Toward a Unified Mean Field Theory

    Full text link
    Conversion of gravitational energy into radiation in accretion discs and the origin of large scale magnetic fields in astrophysical rotators have often been distinct topics of research. In semi-analytic work on both problems it has been useful to presume large scale symmetries, necessarily resulting in mean field theories. MHD turbulence makes the underlying systems locally asymmetric and nonlinear. Synergy between theory and simulations should aim for the development of practical mean field models that capture essential physics and can be used for observational modeling. Mean field dynamo (MFD) theory and alpha-viscosity accretion theory exemplify such ongoing pursuits. 21st century MFD theory has more nonlinear predictive power compared to 20th century MFD theory, whereas accretion theory is still in a 20th century state. In fact, insights from MFD theory are applicable to accretion theory and the two are artificially separated pieces of what should be a single theory. I discuss pieces of progress that provide clues toward a unified theory. A key concept is that large scale magnetic fields can be sustained via local or global magnetic helicity fluxes or via relaxation of small scale magnetic fluctuations, without the kinetic helicity driver of 20th century textbooks. These concepts may help explain the formation of large scale fields that supply non-local angular momentum transport via coronae and jets in a unified theory of accretion and dynamos. In diagnosing the role of helicities and helicity fluxes in disk simulations, each disk hemisphere should be studied separately to avoid being misled by cancelation that occurs as a result of reflection asymmetry. The fraction of helical field energy in disks is expected to be small compared to the total field in each hemisphere as a result of shear, but can still be essential for large scale dynamo action.Comment: For the Proceedings of the Third International Conference and Advanced School "Turbulent Mixing and Beyond," TMB-2011 held on 21 - 28 August 2011 at the Abdus Salam International Centre for Theoretical Physics, Trieste, http://users.ictp.it/~tmb/index2011.html Italy, To Appear in Physica Scripta (corrected small items to match version in print

    Physical constraints on the sizes of dense clouds in the central magnetospheres of Active Galactic Nuclei

    Get PDF
    The range of microphysical and global dynamical timescales in the central regions of Active Galactic Nuclei (AGN) is sufficiently wide to permit the existence of multiphase structure. In particular, very dense, cool clouds can coexist with a hot, magnetically-dominated medium and can thereby efficiently reprocess the continuum radiation generated in this primary source region. The strong dynamical forces in this central magnetosphere can give rise to extremely small clouds. Microphysical processes then determine whether such clouds can indeed survive, in spite of their extremely contrasting properties relative to the surrounding environment, for long enough to produce potentially observable thermal reprocessing signatures. We examine specific physical constraints on the thicknesses of such reprocessing clouds. Our results are plotted to show the range of conditions that is representative of the central regions of AGN. We find a parameter subspace in the extreme high density regime for which the effects of microphysical diffusion processes can be overcome and for which cool gas can maintain pressure equilibrium with the ambient magnetosphere.Comment: 9 pages, LaTeX type, 2 postscript figures, uses rotate.sty and epsf.sty, accepted for publication in MNRA

    Scale Free Cluster Distributions from Conserving Merging-Fragmentation Processes

    Full text link
    We propose a dynamical scheme for the combined processes of fragmentation and merging as a model system for cluster dynamics in nature and society displaying scale invariant properties. The clusters merge and fragment with rates proportional to their sizes, conserving the total mass. The total number of clusters grows continuously but the full time-dependent distribution can be rescaled over at least 15 decades onto a universal curve which we derive analytically. This curve includes a scale free solution with a scaling exponent of -3/2 for the cluster sizes.Comment: 4 pages, 3 figure

    The parasitophorous vacuole of the blood-stage malaria parasite.

    Get PDF
    The pathology of malaria is caused by infection of red blood cells with unicellular Plasmodium parasites. During blood-stage development, the parasite replicates within a membrane-bound parasitophorous vacuole. A central nexus for host-parasite interactions, this unique parasite shelter functions in nutrient acquisition, subcompartmentalization and the export of virulence factors, making its functional molecules attractive targets for the development of novel intervention strategies to combat the devastating impact of malaria. In this Review, we explore the origin, development, molecular composition and functions of the parasitophorous vacuole of Plasmodium blood stages. We also discuss the relevance of the malaria parasite's intravacuolar lifestyle for successful erythrocyte infection and provide perspectives for future research directions in parasitophorous vacuole biology
    corecore