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During intraerythrocytic development, malaria parasites replicate within a membrane-bound parasitophorous 

vacuole. In this Review, Matz, Beck and Blackman explore the origin, development, molecular composition 

and functions of the parasitophorous vacuole during blood stage development. They also discuss the 

relevance of the malaria parasite's intravacuolar lifestyle for successful erythrocyte infection and provide 

perspectives for future research directions. 

 

ABSTRACT 

 The pathology of malaria is caused by infection of red blood cells with unicellular Plasmodium parasites. 

During blood stage development, the parasite replicates within a membrane-bound parasitophorous vacuole. 

A central nexus for host–parasite interactions, this unique parasite shelter functions in nutrient acquisition, 

sub-compartmentalization and the export of virulence factors, making its functional molecules attractive 

targets for the development of novel intervention strategies to combat the devastating impact of malaria. In 

this Review, we explore the origin, development, molecular composition and functions of the parasitophorous 

vacuole of Plasmodium blood stages. We also discuss the relevance of the malaria parasite's intravacuolar 

lifestyle for successful erythrocyte infection and provide perspectives for future research directions in 

parasitophorous vacuole biology. 
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[H1] Introduction 

 Parasites of the genus Plasmodium are the causative agents of malaria. These unicellular organisms 

pose a major threat to global health and substantially impact the economies of many developing countries. In 

2017, ~435,000 people died of malaria, with most deaths occurring in sub-Saharan Africa in children under 

five years of age1. Although rigorous control programs have achieved substantial reductions in the global 

malaria burden, eradication of this devastating disease remains one of the most testing medical challenges 

of the 21st century. The development of innovative, evidence-based intervention strategies strictly depends 

on our improved understanding of the parasite's complex biology. 

  The multi-stage Plasmodium life cycle includes transmission from an Anopheles mosquito to a 

vertebrate host2. Throughout its development in the vector, the parasite remains extracellular, committing to 

an intracellular lifestyle only upon transmission to the vertebrate host where it initially invades hepatocytes in 

the liver. Following a phase of substantial expansion, thousands of specialized invasive forms called 

merozoites [G] are released into the bloodstream where they invade circulating red blood cells (RBCs). The 

intraerythrocytic parasite transitions through ring [G], trophozoite [G] and schizont [G] stages before giving 

rise to multiple daughter merozoites through a process referred to as schizogony. The merozoites are then 

released through parasite-mediated host cell rupture to establish a new round of RBC infection. These 

repeated infection cycles lead to the often fatal pathology of malaria, which in its most severe form features 

high fever, anaemia, organ failure and coma3. 

 Throughout its intracellular development, the parasite resides inside a membrane-bound compartment 

— the so-called parasitophorous vacuole. This Review explores our knowledge of the intraerythrocytic 

parasitophorous vacuole with the aim of highlighting emerging frontiers in the investigation of this highly 

specialized host–pathogen interface. 

[H1] Parasitophorous vacuole biogenesis 

 During invasion, the attached merozoite triggers a drastic invagination of the RBC membrane (RBCM). 

Through a concerted interplay of regulated protein secretion and actinomyosin-dependent force, the 

merozoite propels itself into this growing membrane sack, which ultimately pinches off from the RBCM to 

form the parasite’s intraerythrocytic shelter4 (FIG. 1). 

 The provenance of the parasitophorous vacuole membrane (PVM) has been extensively explored, but 

the unique nature of this compartment and the rapidity of its generation pose special challenges. 

Transmission electron microscopy (TEM) has shown that the PVM and the RBCM form a continuous 

phospholipid structure during invasion5. Accordingly, fluorescent lipophilic probes introduced into the RBCM 

are incorporated into the nascent vacuole at concentrations equivalent to those in the RBCM, implying that 

the PVM is generated entirely from the host membrane6-8. By contrast, metabolically incorporated fluorescent 

lipids from the parasite were also transferred to the vacuole, suggesting that parasite lipids contribute to 

PVM biogenesis9. Given their propensity to transfer across aqueous solutions, the appropriateness of 
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labelled lipid probes for these types of experiments is debatable, particularly as intermembrane transfer of 

such labels might be favoured during invasion owing to the close apposition of the parasite plasma 

membrane (PPM) and RBCM. 

 The surface area of the RBC prior to and post invasion was shown to remain constant, interpreted as 

evidence for a substantial contribution of parasite-derived phospholipids to PVM biogenesis10. Surprisingly, 

the opposite conclusion was reached in the case of Toxoplasma gondii, a related coccidian parasite that is 

able to infect almost all types of nucleated cells of warm-blooded animals. In T. gondii, ongoing vacuole 

formation did not alter host cell membrane capacitance [G], suggesting that no new lipid material is inserted 

into the nascent vacuole11. Only upon pinching off of the Toxoplasma-containing vacuole did the host cell 

membrane undergo a distinct decrease in capacitance, indicating that membrane material had been 

depleted from the surface11. 

 When invasion by Toxoplasma and Plasmodium parasites is stalled with inhibitors of the actinomyosin 

motor complex, vesicles and tubular extensions are observed within the host cells close to the attachment 

sites12-14. TEM studies also visualized the release of multi-lamellar membrane aggregates from the apical 

ends of invading Plasmodium knowlesi merozoites15-17. These membranes are most likely released from the 

rhoptries, twinned club-shaped apical organelles which contain tightly packed membrane whorls and which 

fuse and shrink upon invasion15,16,18. In stark contrast to the RBCM, these released membranes and the 

newly formed PVM do not possess intramembranous particles (IMPs), as determined by freeze fracture 

electron microscopy, together suggesting that the parasite secretes lipid material largely devoid of integral 

membrane proteins19. These observations concur with the exclusion of the highly abundant erythrocyte 

transmembrane proteins Band 3 (AE1) and glycophorin A from the vacuole17,20. By contrast, other host cell 

membrane proteins were shown to be incorporated into the Plasmodium PVM through a process that 

requires association with RBCM lipid rafts20,21. In T. gondii, host cell proteins are selectively assimilated into 

the PVM by passage through the differentially permeable parasite–host cell junction22. Whether this 

phenomenon is also the molecular basis for the selective recruitment of RBCM proteins into the 

parasitophorous vacuole of Plasmodium parasites remains unclear. 

 Upon successful vacuole formation, spherical merozoite organelles known as dense granules fuse with 

the PPM to release their contents into the vacuolar space23. Knowledge of the molecular composition of 

these organelles is limited, but it is clear that the dense granules supply functional molecules for the early 

establishment of signature pathways of the parasitophorous vacuole. Accordingly, proteins involved in RBC 

remodelling and nutrient acquisition (see below) are stored in dense granules prior to their vacuolar 

localization24,25. Following dense granule discharge, proteins are continuously targeted to the vacuole by 

means of default protein secretion, which coincides with the reappearance of IMPs in the PVM19,26,27. 

 Despite the wealth of data, there is currently no consensus over the relative contributions of RBCM and 

parasite to PVM biogenesis28 and in the absence of subcellular fractionation techniques that can 

unambiguously resolve RBCM, PVM and parasite, this issue will remain unsettled. 
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The tubovesicular network 

 During early blood stage development most of the PVM lies in close proximity to the PPM18,29 and a 

recent study has presented evidence for functional contact zones between protein complexes of both 

membranes30. With parasite maturation the vacuole grows in size and complexity, developing large 

membranous loops that extend far into the RBC cytoplasm and that contain vacuolar markers such as 

exported protein 1 (EXP1)31,32. Effectively representing an exported parasite organelle, initial characterisation 

of this so-called tubovesicular network (TVN) was aided by visualization with fluorescent lipid dyes33-35. 

Subsequent work has shown that the Plasmodium falciparum TVN primarily comprises large double 

membrane whorls that envelop portions of RBC cytoplasm, sometimes entirely36. In addition, membranous 

tubules connect the whorls and vacuole-derived vesicular structures, together suggesting a highly 

convoluted and contiguous PVM system (FIG. 1b and c)34-39. Although the TVN is mostly associated with 

mature parasite stages38, its appearance is highly variable and often it is not observed at all. Thus, time-

resolved fluorescence imaging of the parasitophorous vacuole in individual infected RBCs, as previously 

performed for other parasite-induced host cell modifications40, is needed to obtain a better understanding of 

TVN ontogeny. 

 Demonstrations that fluorescent probes such as BODIPY-ceramide delineate the TVN have led to claims 

that the extended vacuolar membranes are enriched in sphingolipids34,35. However, labelling commonly 

extends to all other membranous structures in the infected RBC, lending little support to this notion. A 

subcellular fractionation approach was used to demonstrate sphingomyelin synthase (SMS) activity in the 

'TVN-enriched' fraction34; however, although those authors went to great lengths to rule out a role for 

contamination from other parasite compartments, the idea of sphingomyelin accumulation in the TVN 

remains contentious. Indeed, when over-expressed as an mCherry fusion protein, one of the parasite’s two 

annotated SMS enzymes localized to the plasma membrane in P. falciparum41. We suggest that the 

physiological localization of these enzymes needs to be assessed by tagging of the endogenous genomic 

loci to avoid expression-related artefacts. Thus far there is no reliable and exclusive TVN marker protein 

known. 

 One possible exception is TVN junctional protein 1 (TVN-JP1). Over-expression as a GFP fusion 

localised this protein to specific junctional sites, bridging individual TVN sub-compartments42. The 

physiological significance of this distribution is unclear, particularly given the presence of a potential 

carboxyl-terminal ER retention signal (TDEL) in the TVN-JP1 sequence, which may have been obstructed by 

GFP. The validation of vacuolar protein localization is generally complicated by distinct sequence 

requirements and the unique topology of the parasitophorous vacuole (BOX 1). Artefactual or not, the 

observed localization pattern of GFP-tagged TVN-JP1 indicates the presence of distinct junctional TVN sub-

compartments. 

 The significance of assembling and maintaining this complex structure remains unclear, but it is 

plausible to assume that the TVN serves to accommodate and organize the molecular machinery of the 

vacuole by providing an enlarged and compartmentalised membrane surface. 



5 

[H1] Vacuolar protein traffic 

The intraerythrocytic parasite needs to overcome the paucity of nutrients and exploitable machinery in its 

desolate host cell environment. As a result, Plasmodium species have evolved specialized trafficking 

pathways which enable extensive remodelling of the RBC compartment by exported proteins. As a 

consequence of this parasite-induced host cell makeover, the infected RBC exhibits increased permeability 

to diverse solutes supporting rapid parasite biomass production43,44, and displays altered mechanical 

properties owing to cytoskeletal modifications45. As the spleen removes defective RBCs from the circulation, 

these profound modifications of host cell architecture place the parasite at risk of destruction. Thus, to 

elegantly avoid splenic passage, the parasite exports adhesive molecules to the host cell surface, enabling 

the infected RBC to bind to the vascular endothelium, sequestering it from peripheral circulation46. 

Cytoadhesion of parasitized RBCs can severely impede the function of affected host tissues owing to 

vascular obstruction and the induction of localised inflammatory responses; the ensuing oedema, 

haemorrhage and inflammation contribute substantially to the pathophysiology of severe malaria3,46. 

Despite their functional diversity and variable subcellular distribution (FIG. 2a), all exported proteins are 

first secreted into the parasitophorous vacuole prior to their translocation into the RBC cytoplasm. The 

complicated feat of exported protein trafficking begins at the parasite ER membrane, where entry into the 

secretory pathway is mediated by interactions with several components of the Sec translocon [G], including 

the Sec61 channel and the non-catalytic component of the signal peptidase complex SPC2547. In contrast to 

the classical route, the signal peptidase SPC21 does not appear to participate in the entry of exported 

proteins into the secretory pathway, but is rather replaced by the aspartic protease plasmepsin V47. Most 

exported proteins contain an amino-terminal Plasmodium export element (PEXEL) downstream of a 

recessed signal peptide [G]48,49. The pentameric PEXEL motif constitutes a recognition site for plasmepsin V, 

which cleaves the PEXEL between the third and fourth residue upon ER entry50,51. The newly exposed N-

terminal residue is acetylated by an unknown mechanism to yield the mature protein52. 

This mode of entry into the secretory pathway is distinct from that of bona fide parasitophorous vacuole 

proteins, which usually contain an N-terminal signal peptide that is cleaved by signal peptidase, or which in 

exceptional cases, become N-myristoylated in order to direct them to the vacuole26,53. SPC21 knockdown in 

P. falciparum resulted in reduced levels of the parasitophorous vacuole-resident protein SERA5, whereas 

several PEXEL-containing proteins remained unaffected, highlighting the divergent entry routes of vacuolar 

and exported proteins into the secretory pathway47. Although the PEXEL is typical of most known exported 

proteins, PEXEL-negative exported proteins (PNEPs) also exist54. These typically contain a signal peptide 

and transmembrane domain, and do not appear to depend on SPC25, in contrast to PEXEL-containing 

exported proteins47. In spite of these differences, the N-termini of PNEPs contain information that is 

functionally equivalent to the mature processed PEXEL N-terminus, although this transcends a discernible 

linear motif55. It remains unclear how these early secretory events that appear to mark proteins for export are 

connected to cargo identification in the parasitophorous vacuole, where all types of exported protein traffic 

converge for translocation across the PVM56,57. 

The existence of a vacuolar protein translocon was initially indicated by experiments that revealed 
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protein export from the parasitophorous vacuole to be dependent on ATP and cargo unfolding58,59. 

Furthermore, chimeric cargo proteins trapped in a tightly folded state were arrested in the vacuole, where 

they prevented the export of other cargo, implying a blocked translocon pore30. The discovery of a heat 

shock protein 100 family member in the parasitophorous vacuole, called HSP10160, was conspicuous given 

that these chaperones usually form hexameric protein unfolding machines that hydrolyse ATP to remodel 

cargo and thread it through the central pore of the oligomer61. Indeed, HSP101 was found to participate in a 

PVM-anchored complex subsequently named the Plasmodium translocon of exported proteins (PTEX; FIG. 

2b)60. PTEX comprises at least four additional proteins: PTEX150, PTEX88, an integral membrane protein 

known as exported protein 2 (EXP2), and the thioredoxin TRX2. Of these five components, HSP101, 

PTEX150 and EXP2 comprise an essential PTEX core complex and conditional inactivation of any of these 

components blocks protein export across the PVM56,57,62,63.  

Recently, single-particle cryo-electron microscopy yielded a near-atomic resolution structure of the core 

complex purified directly from cultured P. falciparum64 (FIG. 2c). The structure revealed a hexameric HSP101 

unfoldase, which is tethered to a membrane-spanning heptameric EXP2 pore through a PTEX150 heptamer. 

Crucially, this work enabled the structural visualisation of PTEX in two states, distinguished primarily by 

large-scale changes in the HSP101 hexamer between extended helical and flattened planar forms. The 

helical architecture has emerged as a common feature of HSP100 chaperones and is important for 

directional substrate feeding65. Remarkably, endogenous cargo was visible within the HSP101 channel in 

both states, suggesting a ratchet-like mechanism whereby interactions with tyrosine-bearing pore loops 

couple power from ATP hydrolysis to grip and pull exported cargo into the translocon channel64. 

Although not visible in the cryo-electron microscopy structure, PTEX88 has been shown to interact 

closely with HSP10166. Loss of PTEX88 does not measurably impact protein export but does reduce 

cytoadhesion and sequestration of infected RBCs in human and rodent malaria models67-69. This suggests 

that PTEX88 is either involved in the export of a discrete set of proteins yet to be identified, or that it may 

serve in some other capacity than trafficking from the vacuole, such as modification of exported proteins to 

support their ultimate function at the host cell surface. Additional PTEX interaction partners have been 

identified by proteomic analyses (FIG. 2b), but there is little evidence for a direct involvement in the 

translocation process70-72. 

The thioredoxin TRX2 is the only PTEX auxiliary component with a known enzymatic activity and has 

been postulated to reduce disulphide bridges to aid in unfolding cargo or in regulating PTEX60. Disruption of 

TRX2 in Plasmodium berghei causes only a mild growth defect, but does observably diminish protein export 

and parasite sequestration57,68,69,73. It has been debated whether TRX2 constitutes a bona fide PTEX 

component, owing to several reports claiming localization to either the parasitophorous vacuole73-75, the 

mitochondrion76 or to parasite organelles of unknown identity69,73,74. Repeated detection during proteomic 

analysis of PTEX suggests that TRX2 resides at least partially in the vacuole or interacts with the translocon 

or cargo proteins during trafficking60,72,73. Accordingly, the reported punctate distribution of fluorescently 

tagged TRX2 in the cytoplasm of both human and rodent malaria parasites might be indicative of a secretory 

compartment, such as the Golgi apparatus69,74. 
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In the case of exported membrane proteins, which are trafficked through secretory vesicles that initially 

fuse with the PPM, PVM translocation is preceded by extraction from the PPM30,55. Recent work provides 

evidence for an HSP101-independent unfolding power in the parasitophorous vacuole operating on exported 

integral membrane proteins, suggesting a distinct PPM extraction machinery77. This is further supported by 

the observation that the PVM protein EXP1 is extracted from the PPM in a PTEX-independent manner78. 

Owing to the translocon’s intravacuolar topology64, PTEX does not appear to be involved in the refolding 

of exported proteins once they cross the PVM. In P. falciparum, an array of exported chaperones have been 

tentatively implicated in this process79,80. An additional possibility is that host machinery is co-opted for this 

purpose. Host HSP70 displays altered solubility in infected RBCs, which may represent recruitment to assist 

refolding or trafficking of exported membrane proteins81. More recently, the erythrocyte TCP1 ring complex 

was reported to interact with parasite cargo71. However, at present, how exported proteins are received and 

refolded on the RBC side of the PVM remains largely unknown. 

Interestingly, both vacuolar and exported proteins are incorporated into the parasite food vacuole during 

the endocytic uptake of RBC cytoplasm, where some of them participate in haemoglobin digestion and haem 

detoxification82,83. There has also been a report on protein trafficking to the relic parasite plastid through the 

parasitophorous vacuole84. Together with its prominent role in protein export, these functions implicate the 

parasitophorous vacuole as a transitional sorting hub for effector proteins targeted to diverse subcellular 

locations. 

[H1] Nutrient permeation across the PVM 

 Owing to the limited anabolic activity of the RBC, the malaria parasite struggles to obtain sufficient 

nutrients for rapid biomass production and so digests the available haemoglobin to support its amino acid 

supply85. However, isoleucine is completely absent from human haemoglobin whilst several other amino 

acids and nutrients are also underrepresented in the RBC86. Thus, Plasmodium species acquire additional 

metabolites from the blood plasma by exporting nutrient transporters to the RBC surface, establishing the so-

called new permeability pathways (NPPs; see above)43,44. After crossing the RBCM, imported nutrients need 

to traverse the PVM. Patch clamp measurements with released PVM-enclosed asexual P. falciparum blood 

stage parasites have determined the presence of a size-selective nutrient pore, which is present at high 

density and is constitutively open87. Polyethylene glycols of different polymer lengths were used to determine 

a size exclusion limit of ~1.4 kDa and an effective pore diameter of 23 Å88, through which amino acids and 

monosaccharides can efficiently traverse87. Surprisingly, the PVM pore was shown to be narrower during the 

parasite’s liver stage development, as it only allows passage of molecules smaller than 855 Da89. Whether 

this reflects distinct pore proteins and/or different nutrient requirements during blood and liver stage 

development, remains to be shown. 

 A nutrient pore is also present in the parasitophorous vacuole of T. gondii-infected cells, with a size 

exclusion profile very similar to that of Plasmodium blood stage parasites (~1.3 kDa)90. In T. gondii, PVM 

conductance is promoted by GRA17 and GRA23, orthologs of the pore-forming PTEX component EXP2 in 
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Plasmodium species91. GRA17-deficient T. gondii parasites are unable to import organic compounds into the 

parasitophorous vacuole, a phenotype which was reverted upon complementation with P. falciparum EXP291. 

Furthermore, expression of EXP2, GRA17, or GRA23 increased solute conductance in Xenopus laevis 

oocytes, consistent with channel activity91. EXP2 function was then examined in P. falciparum blood stages 

using regulated gene expression in combination with patch clamping63, demonstrating a tight correlation 

between EXP2 protein levels and the frequency of channel detection. Truncation of EXP2 altered the 

channel's voltage response, further supporting the notion that EXP2 is the solute-conducting pore of the 

Plasmodium PVM63. The high density of the pore complex rules out the maintenance of a vacuolar 

transmembrane potential and suggests that the concentrations of most soluble metabolites are similar in the 

RBC cytosol and in the vacuolar matrix. Strikingly, no other channel activities were recorded in two 

independent studies with different patch clamping approaches, suggesting that no additional solute transport 

processes occur at the PVM63,88. 

 EXP2 thus appears to form both the protein conducting channel of PTEX and the PVM nutrient pore63. 

Whereas most PTEX components are restricted to the Plasmodium genus, EXP2 orthologs, such as GRA17 

and GRA23, are broadly conserved in vacuole-dwelling apicomplexans91. This remarkable double channel 

functionality suggests that an ancestral EXP2-family nutrient channel was adapted for protein translocation 

through coupling the HSP101 protein unfoldase activity to the channel through PTEX150. The discordant 

expression of EXP2 with other PTEX components25,63 and incomplete co-localization of EXP2 and 

HSP10138,92 suggest that the transport of small molecules occurs through translocon-independent pores (FIG. 

2b). How EXP2 is installed in the PVM is unclear, although RON3, a rhoptry protein [G] conserved among 

apicomplexans that is injected into the parasitophorous vacuole during invasion, was recently reported to be 

crucial to both protein export and small molecule transport in P. falciparum, suggesting that it might serve as 

an EXP2 PVM insertase93. 

 Despite the original demonstration of an abundant PVM pore in 199387, a competing model of nutrient 

acquisition was advanced in 1997, presenting the TVN as a specialized import structure for extracellular 

nutrients. Inspired by the report on sphingomyelin synthesis in the TVN34, treatment of P. falciparum with a 

sphingolipid synthesis inhibitor was found to result in aberrant TVN assembly and reduced incorporation of 

fluorescent dyes, amino acids and nucleosides into the parasite94. The observation that inhibitor-treated 

parasites were still able to export proteins and remodel the host cell, was presented as evidence for ongoing 

parasite maturation and was thus interpreted in favour of a specific 'starvation phenotype'. The authors 

argued that the TVN might transiently associate with the RBC surface to import nutrients from the blood 

plasma94. However, TVN perturbation was accompanied by a much smaller parasite size, suggesting that the 

inhibition of sphingolipid synthesis affects parasite development from an early stage. As the TVN is 

predominantly formed at mature parasite stages, a lack of tubovesicular membranes upon inhibitor treatment 

is not surprising. Any accompanying defect in nutrient permeation can be equally well explained as a 

secondary effect of reduced parasite fitness or even parasite mortality. Thus, although the data provide some 

evidence for the importance of sphingolipid synthesis for parasite survival, no clear conclusions can be 

drawn about TVN function. A competing model has postulated the presence of a permanent connection or 

'parasitophorous duct' between vacuole-derived extensions and the RBCM, directly supplying the 
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intracellular parasite with plasma-derived nutrients and macromolecules33. This model is not consistent with 

our growing knowledge about the protein export-dependent NPP and the vacuolar EXP2 pores, which 

together promote sequential transmembrane transport of nutrients across RBCM and PVM. Thus, the notion 

of a transient or permanent continuum between the blood plasma and parasitophorous vacuole remains 

contentious. 

[H1] Vacuolar compartmentalization 

 Several studies have reported a 'necklace of beads' staining pattern around the parasite upon secretion 

of fluorescent parasitophorous vacuole reporters, suggestive of individual protein-containing pockets or foci 

between the PVM and PPM, particularly in ring stages25,27,60,92,95,96. In mature parasites, co-localization of a 

signal peptide-GFP fusion with BODIPY-ceramide by live fluorescence microscopy revealed protein 

secretion into defined regions of the vacuole and TVN27. Importantly, the GFP signal was absent from 

several vacuolar locations, all of which were prominently labelled with the lipid dye27. Photobleaching 

revealed limited protein exchange between distinct vacuole sub-compartments, including individual beads 

and TVN loops27,96. Thus, the beads and the TVN appear to fulfil equivalent functions in the spatial 

organization of the vacuolar proteome.  

 There are two possible mechanistic explanations for vacuolar sub-compartmentalization, which are not 

mutually exclusive: proteins are trafficked to isolated sub-compartments of the parasitophorous vacuole by 

site-directed secretion; and/or secreted proteins are targeted to the vacuole and subsequently redistributed. 

Site-directed secretion appears a plausible scenario, supported by the fact that exported proteins undergo 

divergent processing steps in the parasite ER47,50,51. The non-uniform vacuolar swelling following PTEX 

inactivation is also in line with discrete sites of export activity63. However, a split-GFP reporter system 

showed that non-exported vacuole-resident proteins have free access to PTEX, arguing against completely 

isolated sub-compartments63. At present, EXP1 has emerged as a key player in the spatial organization of 

PVM-embedded proteins. Upon genetic inactivation of EXP1, the pore protein EXP2 accumulated in few 

distinct PVM regions, including loops of the TVN97. This correlated with impaired nutrient permeation and 

parasite mortality, but most surprisingly did not impact protein export. Whether this sorting function of EXP1 

is mediated by protein recruitment to lipid rafts within the PVM remains to be shown. 

 A recent study has implicated the P. falciparum TVN in the sequestration of export-incompetent cargo 

proteins98. Cargo that was inducibly trapped in a tightly folded state accumulated in TVN loops and also 

stimulated loop assembly98. It has thus been hypothesized that the TVN might retain cargo proteins which 

are not quite ready for export or which have failed to unfold, thereby preventing exhaustion of the protein 

translocation machinery98. In agreement with these observations, an exported reporter protein localized to 

the parasitophorous vacuole during trafficking but was specifically excluded from the loops, suggesting that 

this part of the TVN is not a protein export-competent site99. Accordingly, no translocon-exclusive PTEX 

components have been detected in the P. falciparum TVN25,60,92,98. Even though these observations contrast 

with the exclusive localization of HSP101 and PTEX88 to the TVN equivalent in P. berghei, it appears that 

spatial segregation of the protein export machinery is a shared feature among Plasmodium species38,69. 
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 Several TEM studies have revealed parasite-induced compartments within the infected RBC which 

appear to originate from the PVM31,32,39. In support of these observations, a study described detachment of 

vesicular compartments from the TVN that stain positive for the lipid dye BODIPY-ceramide and a soluble PV 

reporter protein27. In agreement with the double membrane morphology of TVN loops, the detached 

compartments exhibited a rim-like staining for the lipid dye and the secreted reporter, together implicating the 

TVN in the generation of autonomous double membrane vesicles and possibly supporting a role as a 

‘molecular garbage bin’ for improperly folded export cargo27,38,98-100. 

 Another study reported that EXP2-positive vesicles are predominantly generated in reticulocytes, as 

shown by co-localization with CD71 in P. berghei-, Plasmodium yoelii- and P. falciparum-infected cells100. 

Although reticulocytes generally make up only a fraction of circulating RBCs, several Plasmodium species, 

including the human pathogen Plasmodium vivax, show strong tropism for immature erythrocytes101. 

Residual vesicular trafficking regulators in the host cell might facilitate PVM budding, but whether these 

fission events represent specific adaptations towards the developmental status of the RBC remains unclear.  

 Fission from the parasitophorous vacuole has also been proposed for the so-called Maurer’s clefts. 

These thin membrane lamellae are generated during the early ring stage and initially display vivid mobility 

inside the cell40. Maurer’s cleft formation is completed during the early trophozoite stage, when they become 

tethered to the inner surface of the RBCM or cytoskeleton through proteinaceous anchors36,40,102. Equivalent 

structures with varied characteristics are generated by other Plasmodium species, but all appear to serve as 

platforms to sort exported effectors to their target sites inside the RBC compartment103. Although some 

observations point to a vacuolar origin for the Maurer’s clefts, there is a lack of definitive evidence supporting 

this mode of genesis (BOX 2). Additional membranous compartments inside the Plasmodium-infected RBC 

include the acridine orange-stained vesicles and J-Dots, as well as coated and uncoated vesicles with an 

inner diameter of ~25 nm28,36. However, their primary origin remains unknown. 

 In contrast to the numerous reported fission events, there is no conclusive evidence for the 

parasitophorous vacuole or any derived structures fusing with one another or with the RBCM. This is 

exemplified by the fact that every parasite within multiply-infected RBCs is enveloped by its own vacuole. 

Unpublished observations indicate that the secretion of mCherry from one P. berghei parasite and of GFP 

from another, never leads to signal overlap in dually infected murine erythrocytes (J. M. Matz, personal 

communication). Furthermore, the vacuole does not fuse with the RBCM during parasite egress, as 

previously suggested104, which would intuitively represent a convenient mechanism for parasite release. 

Collectively, current evidence suggests that the malarial parasitophorous vacuole is a highly 

compartmentalized non-fusogenic compartment with a great capacity for membrane budding. 

[H1] The vacuole during parasite egress 

 During the final stages of intraerythrocytic development, the parasite gives rise to several newly formed 

daughter merozoites. To exit the host cell and re-invade another, the parasites have to break down the PVM 

and RBCM in a complex choreography known as parasite egress (FIG. 3a). Inspection by electron and video 
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microscopy revealed cases of merozoites free within the RBC cytoplasm late during schizogony, suggesting 

that parasitophorous vacuole disruption precedes RBCM rupture105-107. This was later supported by immuno-

electron microscopy showing re-localization of S-antigen from the vacuole to the cytoplasm of the intact RBC 

upon PVM disintegration108,109, as well as by imaging transgenic P. falciparum parasites expressing vacuole-

localized or exported GFP fusions109. In early schizonts, the fluorescent proteins exhibited the expected 

localization to the parasitophorous vacuole or to the RBC cytoplasm, respectively. Upon initiation of egress, 

both signals equilibrated across the PVM while the RBCM was still intact, elegantly proving that vacuole 

disruption occurs first109. Time-resolved TEM and fluorescence microscopy of gametocyte egress indicate 

that sexual and asexual blood stages share the inside-out dynamics of host cell exit110,111. 

 These observations are supported by numerous more recent egress inhibitor studies. Parasite egress is 

controlled by internal signalling pathways and the action of secreted and vacuole-resident proteolytic 

enzymes112-114. Accordingly, certain kinase and protease inhibitors block egress at different steps in the 

process, a fact that has been extensively exploited in the dissection of the molecular pathways involved. 

Selective inhibitors of the parasite cGMP-dependent protein kinase (PKG) prevent discharge of a subtilisin-

like serine protease called SUB1 into the vacuolar lumen115. PKG acts in concert with another, calcium-

dependent parasite protein kinase called CDPK5 which is also required for egress, although its precise role 

is unclear116,117. Substrates of SUB1 include components of the merozoite surface protein 1 complex and 

members of the serine-rich antigen family of papain-like proteins (SERA), which regulate merozoite liberation 

upon processing118-124. Maturation of SUB1 is in turn mediated by an aspartic protease called plasmepsin X. 

Accordingly, pharmacological inhibition or genetic disruption of plasmepsin X results in egress arrest125,126. 

Similarly, preventing SUB1 discharge with PKG inhibitors or by genetic ablation causes the parasites to 

arrest within an intact vacuole127-129. By contrast, the cysteine protease inhibitor E64 which abates activity of 

the protease SERA6 in P. falciparum blocks parasite egress at a later stage, allowing efficient lysis of the 

PVM but trapping merozoites within the RBC107,127,129. 

 PVM disruption is preceded by a brief stage of vacuolar rounding in which the daughter merozoites 

arrange around the central food vacuole in an orderly fashion, a process also referred to as ‘flower formation’ 

or rounding up130. One study used fluorescent markers of the parasitophorous vacuole matrix and membrane 

to demonstrate that the PVM is in close contact with the daughter merozoites during late schizogony, 

sometimes even folding into the gaps between multiple merozoites, a phenomenon described 

previously131,132. Upon flower formation, the PVM marker assumed a circular staining pattern, whereas the 

luminal marker remained distributed around the merozoites, indicating that the PVM loses its close 

association with the parasites131. The vacuolar volume remained constant during rounding, refuting earlier 

assertions of an osmotic swelling mechanism106,131. It is conceivable that physical connections between the 

PPM and PVM become disconnected during this phase to allow subsequent merozoite release. Under such 

conditions, the parasitophorous vacuole would assume its most energy-efficient shape, becoming close to 

spherical. Alternatively, the re-orientation of the merozoites during flower formation might simply unfurl the 

PVM. 

 One to two minutes following rounding up, the parasitophorous vacuole is breached by soluble vacuolar 
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contents (FIG. 3b) and haemoglobin127,131. The PVM still appears intact at this point until it is ultimately 

degraded to multi-lamellar vesicles shortly before host cell egressdeparture107,127 (FIG. 3c). Live microscopy 

of transgenic parasites expressing fluorescently tagged EXP2 revealed that the PVM ruptures at discrete foci 

and progressively decomposes from the sites of breakage131. PVM permeation and PVM breakdown appear 

to be discrete steps during egress, because the permeable PVM does not rupture in parasites arrested with 

PKG inhibitors127. This intermediate state of high permeability but structural integrity was observed to last up 

to 30 minutes in untreated P. falciparum schizonts127 and is reminiscent of the egress mode of Plasmodium 

liver stages, which also features a period of vacuolar leakage prior to PVM disruption133-135. By contrast, 

another study observed a tight temporal correlation between vacuolar leakage and vacuole rupture proper 

during asexual blood stage egress131. This latter scenario is similar to the reported egress phenotype of P. 

falciparum gametocytes, which were shown to degrade the parasitophorous vacuole within less than a 

minute following activation of the egress pathway111. 

 Final rupture of the PVM coincides with the poration and collapse of the RBCM around the parasites 

only moments before merozoite release107,115,124,127,129-131. As well as perhaps indicating that PVM rupture and 

RBCM poration may be mediated by the same effector protein or proteins, this signifies the presence of a 

physical barrier around the parasites for as long as an intact host cell is present. Disruption of the RBCM is a 

rapid process, but the parasite clearly mediates a step-wise dismantling of its protective niche, further 

highlighting the significance of the Plasmodium-containing vacuole until the very end of RBC infection. 

 The molecular mechanisms underlying the dismantling of the Plasmodium blood stage PVM remain 

elusive. Observations in the related coccidian parasite T. gondii suggest the involvement of both perforating 

and membrane lytic proteins136,137. Although the genome of the malaria parasite encodes five perforin-like 

proteins, all are individually dispensable in asexual blood stages and have been implicated in other life cycle 

stages, including gametocytes, ookinetes and sporozoites138,139. Interestingly, a vacuole-localized parasite 

phospholipase has been demonstrated to promote P. berghei liver stage egress133. However, its genetic 

ablation did not obviously impair blood stage proliferation133. The parasite appears to express additional 

enzymes with the potential for lipolytic activity140, yet their possible roles in blood stage egress remain to be 

determined. 

[H1] Why live in a parasitophorous vacuole? 

 Plasmodium parasites devote considerable resources to the assembly and maintenance of their 

intraerythrocytic niche by providing lipids for PVM expansion as well as energy and functional molecules for 

vacuolar pathways. Yet, the primary role of the parasitophorous vacuole during blood stage development 

remains elusive. Vacuolar compartments are often of great benefit for intracellular pathogens, because they 

provide a safe hiding place whilst still allowing for host–cell interactions141. Exemplifying this protective 

function, host-induced degradation of the T. gondii-containing PVM results in rapid parasite killing within the 

host cell cytoplasm142. By contrast, Plasmodium parasites have no obvious reason for hiding in a vacuole 

during blood stage development. After all, they replicate inside a terminally differentiated cell which is devoid 

of organelles, pathogen recognition pathways or cell-autonomous defence mechanisms. Therefore, one is 
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left to wonder what the benefit of the intraerythrocytic parasitophorous vacuole might be. 

 Maintenance of a parasitophorous vacuole is not imperative for successful parasitism of the erythrocyte. 

As an example of this, the closely related piroplasm parasites Babesia spp. and Theileria spp. initially form a 

vacuole during RBC invasion but degrade this temporary envelope only a few minutes later143-145. Despite 

this, Babesia spp. replicate many aspects of Plasmodium-induced host cell makeover, including the 

trafficking of virulence factors, rigidification of the RBC, induction of intraerythrocytic membranous 

compartments and knob-like protrusions of the RBCM, as well as cytoadhesion and parasite 

sequestration146-148. Together, these observations demonstrate that efficient host cell remodelling does not 

require a parasitophorous vacuole. By contrast, the mechanisms that have evolved to achieve protein 

translocation across the Plasmodium PVM appear extraordinarily complex in the light of the alternative 

strategy of a cytosolic lifestyle. Similarly, the vacuolar adaptations required to enable nutrient permeation and 

egress are fundamentally molecular coping mechanisms to overcome the hurdle imposed by the surrounding 

PVM. Novel proteomic approaches targeting the parasitophorous vacuole hold promise for the identification 

of factors necessitating the parasite’s intraerythrocytic niche (BOX 3). 

 Despite the lack of cell-autonomous defence mechanisms in the erythrocyte, the parasitophorous 

vacuole of the malaria parasite may fulfil a protective function. As a result of their role in oxygen transport, 

both infected and uninfected erythrocytes are continuously exposed to reactive oxygen species, which 

threaten the integrity of cellular membranes and proteins149. One prominent source of radical-induced cell 

damage is free haem, concentrations of which can reach ~20 µM in uninfected RBCs, possibly owing to 

spontaneous haemoglobin degradation150. Enzymatic and non-enzymatic redox regulators protect the RBC 

from haem and radical-induced damage151, but as a fast-growing organism the malaria parasite likely 

requires additional adaptations to withstand these harsh conditions. As such, the parasitophorous vacuole 

could provide an important layer of protection. Perhaps relevant to this, the abundant PVM protein EXP1 was 

shown to act as a glutathione transferase with the capacity to detoxify haem in vitro, providing some support 

for a potential function of the parasitophorous vacuole in redox protection152. However, this enzymatic activity 

of EXP1 does not contribute to parasite blood stage development in vivo97. 

 The maintenance of the parasitophorous vacuole during blood stage development could also be rooted 

in the parasite's preceding expansion phase in the mammalian liver, because the capacity of the hepatocyte 

to initiate innate and adaptive defence mechanisms might necessitate an intravacuolar niche during 

exoerythrocytic schizogony. Indeed, transgenic rodent malaria parasites which lack expression of 6-Cys 

family-related proteins and consequently lose their PVM, arrest development within the hepatocyte and 

rapidly trigger host cell apoptosis and adaptive immune responses153-155. As the machinery for maintaining 

and operating a parasitophorous vacuole is encoded in the Plasmodium genome anyway, the parasite might 

simply adhere to this strategy during blood infection. In this context, it may be notable that the life cycle of 

Babesia parasites lacks a preceding tissue stage in the mammalian host prior to RBC infection. It is, 

however, questionable whether the strategy of simply adhering to a liver stage-specific adaptation outweighs 

the costs of vacuole construction, maintenance and operation during RBC infection.  

 Surprisingly, P. falciparum blood stages were shown to be capable of undergoing schizogony in an 
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axenic culture system in which parasites are maintained in a gelatinous matrix of RBC homogenate and 

nutrient supplements156. Despite the absence of both PVM and intact host cells, the parasites remained 

viable as indicated by parasite segmentation, the incorporation of rhodamine 123 [G] and the generation of 

haemozoin [G]156. These observations raise the question as to whether Plasmodium parasites can also 

survive outside their vacuole in the context of RBC infection. As of yet, the ultimate purpose of the parasite’s 

intraerythrocytic vacuole remains a mystery. 

[H1] Conclusions and future perspectives 

 Over 60 years since the first description of the parasitophorous vacuole in Plasmodium-infected RBCs29, 

extensive research has only really begun to unravel the functions of the parasite's intraerythrocytic niche. 

Although our understanding of vacuolar protein export, nutrient acquisition and compartmentalization 

continues to improve, many fundamental questions remain unanswered. How exactly is the parasitophorous 

vacuole generated? How does it grow? By what means is it degraded at egress? What evolutionary 

pressures underlie its development and what is its ultimate physiological purpose? Another largely 

unexplored area is the composition and spatial organization of PVM lipids. How does the parasite traffic 

lipids from and to the PVM? Do specific lipids form functional microdomains within the PVM and does this 

relate to differential protein targeting? Given the obvious importance of the parasitophorous vacuole as a 

central host–pathogen interface, we cannot afford to neglect these questions. Parasitophorous vacuole 

biology remains controversial and challenging to dissect, and we should not be discouraged by the wealth of 

often conflicting data. Despite decades of research, many characteristics of the vacuole remain disputed and 

are in desperate need of revisiting. The ongoing development of new molecular tools and their 

implementation in the field of malaria research will hopefully enable us to settle some of the long-standing 

controversy and solidify our understanding of this intriguing parasite habitat. 
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Fig. 1  The parasitophorous vacuole of the malaria parasite. a  Biogenesis of the parasitophorous 

vacuole. The merozoite induces invagination of the red blood cell membrane (RBCM) during invasion. Active 

merozoite motility and subsequent membrane scission result in the formation of the parasitophorous vacuole 

(blue). b  Remodelling and trafficking of the parasitophorous vacuole membrane (PVM). The vacuole can 

form a continuous space around the parasite (1). The frequently observed 'necklace of beads' morphology is 

indicative of constriction zones between parasite and PVM (2). Membrane whorls emerge from the PVM (3) 

and envelop host cell cytoplasm, resulting in formation of the tubovesicular network (TVN) (4) and the 

release of double membrane vesicles (5). The TVN also features distinct junctional sites (green), as well as 

partially interconnected tubular (6) and vesicular compartments (7). Maurer’s clefts (MCs) are believed to 

bud off from the parasitophorous vacuole and become tethered below the RBCM through proteinaceous 

anchors (dark blue) (8). There is debate as to whether the MCs remain connected to the vacuole or not. 

Endocytosis of host cell cytoplasm leads to the formation of intraparasitic endosomes lined by the PVM and 

parasite plasma membrane (PPM) (9). The PVM is ultimately degraded during haemoglobin digestion and 

concomitant haemozoin formation (dark brown rectangles) (10). c  Morphology of the parasitophorous 

vacuole in maturing parasites. Shown are live fluorescence micrographs of transgenic Plasmodium berghei 

parasites expressing mCherry-tagged PV1 (Ca and Cb) or EXP2 (Cc and Cd) Shown are the ‘necklace of 

beads’ (Ca), tubular extensions (Cb), TVN whorls (Cc) and budding from the PVM (Cd). Red, tagged protein; 

blue, nucleus. Scale bar, 5 µm. 
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Fig. 2  Molecular transport across the parasitophorous vacuole membrane. a  Various locations of 

exported Plasmodium proteins. Shown are live fluorescence micrographs of transgenic Plasmodium berghei 

parasites expressing mCherry-tagged versions of a PEXEL reporter exported into the RBC cytoplasm (top), 

intra-erythrocytic P. berghei-induced structures 1 (IBIS1) localizing to the Maurer’s cleft equivalent (middle), 

or the erythrocyte membrane-associated protein 1 (EMAP1) (bottom). Red, tagged protein; blue, nucleus. 

Scale bar, 5 µm. b  Nutrient and protein traffic across the parasitophorous vacuole membrane (PVM). EXP2 

(purple) forms a heptameric pore facilitating free nutrient diffusion across the PVM. The pore complex also 

translocates exported virulence factors (grey) upon assembly with PTEX150 (yellow) and HSP101 (green). 

Auxiliary factors of the Plasmodium translocon of exported proteins (PTEX), including PTEX88, thioredoxin 2 

and surface protein P113 (brown), are thought to assist protein unfolding and delivery. The exported protein-

interacting complex (EPIC), consisting of PV1, PV2 and the transmembrane protein EXP3 (orange), is 

thought to deliver protein cargo to PTEX. Upon translocation, red blood cell (RBC) chaperones, such as the 

TCP1 ring complex (red) might receive and refold the cargo. c  Structure of PTEX in distinct ‘engaged’ and 

‘resetting’ states determined by cryo-electron microscopy (PDB IDs 6E10 and 6E11)64. ATPS molecules are 

highlighted in red. View from the RBC cytosol shows cargo trapped in the engaged HSP101 channel (grey, 

bottom).  
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Fig. 3  The parasitophorous vacuole during egress. a  The parasitophorous vacuole membrane (PVM) 

(blue) undergoes distinct morphological phases during parasite egress. Upon completion of schizogony, the 

merozoites align around the central food vacuole (dark grey) and the parasitophorous vacuole rounds up. 

The PVM becomes perforated and is then broken down into multilamellar vesicles, which coincides with red 

blood cell membrane (RBCM) poration and collapse. Subsequent RBCM rupture releases the merozoites 

and the cycle starts anew. b  Equilibration of soluble protein contents across the PVM prior to merozoite exit. 

Shown are live fluorescence micrographs of mCherry-tagged PV2 (orange) in transgenic Plasmodium 

berghei schizonts before (left), during (middle) and following parasite egress (right). Scale bar, 5 µm. Initially, 

fluorescence is closely associated with the merozoite periphery, then spreads throughout the red blood cell 

cytoplasm upon PVM disruption and ultimately diffuses into the extracellular medium, leaving only a brightly 

stained fraction within the parasite’s digestive vacuole upon completed egress. c  Fragments of ruptured 

PVM (black boxes) are observed within the RBCM (white arrowhead) of E64-treated Plasmodium falciparum 

schizonts by transmission electron microscopy of high-pressure frozen, freeze-substituted thin sections (left). 

M, merozoite; Scale bar, 1 µm. PVM fragments frequently form multi-lamellar vesicles (right), within which 

PVM-associated protein complexes can be observed (black arrowheads). Shown is an average of ten central 

slices from a tomogram reconstructed from a -60o → +60o dual-axis tilt series collected on a 120 kV electron 

microscope. Scale bar, 100 nm. Electron microscopy images courtesy of Claudine Bisson (Birkbeck, 

University of London).  
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Box 1  Validation of parasitophorous vacuole localization 

 Vacuolar residency is most commonly validated by genetic incorporation of protein tags, as opposed to 

the laborious and time-consuming generation of specific antibodies for immunofluorescence. Proper 

validation requires tagging of the endogenous gene, as over-expression of an additional copy can lead to 

localization artefacts. Furthermore, introduced tags may affect protein function owing to steric hindrance and 

interference with protein interactions. Thus, successful tagging of an essential single-copy genomic locus 

lends support to the physiological localization and functionality of the expressed fusion protein. 

 Before tagging, carboxyl-terminal targeting information such as ER retention signals (RS) must be 

considered. The functionality of such motifs can be assessed by appending them to the carboxy-terminus of 

a secreted reporter, such as a signal peptide (SP) GFP fusion70 (see the figure). Alternatively, the tagging 

sequence can be incorporated directly upstream of the putative ER retention signal. Upon ER retrieval, the 

fusion protein will be retained inside the parasite instead of localizing to the parasitophorous vacuole. The 

amino-terminus of vacuolar proteins is less accessible to tagging owing to the presence of important 

sequence information that promotes entry into the secretory pathway. 

 The confirmation of vacuolar targeting by microscopy is hampered by the close apposition of the 

parasite plasma membrane (PPM) and parasitophorous vacuole membrane (PVM). Thus, co-localization 

with a parasitophorous vacuole marker protein to the periphery of the parasite is generally considered 

insufficient. There are, however, additional indicators of vacuole residency using conventional fluorescence 

microscopy. If the circumferential pattern is accompanied by protrusions, such as tubules or loops, a 

vacuolar localization can be assumed, because these structures are core features of the tubovesicular 

network (TVN), whereas the parasite surface is relatively smooth. Previous studies have also examined 

egressing merozoites to validate vacuolar localization. Soluble proteins of the parasitophorous vacuole 

matrix should be released or may be restricted to the central food vacuole, owing to the internalization of 

parasitophorous vacuole material during haemoglobin uptake. By contrast, the parasite surface should 

usually be devoid of any signal due to free protein dispersion upon merozoite release70,157 (FIG. 3b). An 

additional localization to the disintegrating PVM is indicative of membrane association158. It should be noted 

that maturation events may in some cases lead to changes in the solubility profile of vacuolar proteins, as 

exemplified by SERA5 where the full-length protein is soluble in the vacuole but processing by SUB1 during 

egress leads to generation of amino- and carboxy-terminal fragments that bind to the merozoite surface159. 
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Box 2  Origin of the Maurer’s clefts 

 In a host cell lacking an endomembrane system and its associated machinery, trafficking of exported 

membrane proteins to the host cell periphery presents a particular challenge which is met through the de 

novo formation of the Maurer’s clefts in Plasmodium falciparum-infected red blood cells103. However, their 

mode of genesis remains unknown. Several electron microscopy studies have demonstrated the emergence 

of lamellar bodies from the parasitophorous vacuole, interpreted as Maurer’s cleft biogenesis160. However, 

the presence of EXP1 suggests that these lamellae actually represent projections of the tubovesicular 

network (TVN)31,35. It is striking that neither luminal nor membrane-associated parasitophorous vacuole 

marker proteins are detected in the Maurer’s clefts, despite their initial secretion from dense granules and 

expression during the early ring stage25,40. This may indicate that either: all vacuolar proteins are retained in 

the lumen and membrane of the vacuole during Maurer’s cleft budding; or that they are degraded inside the 

Maurer’s clefts; or that the origin of the Maurer’s clefts is in fact not the parasitophorous vacuole. 

 A fluorescence microscopy study has reported the transient localization of a GFP-tagged Maurer’s cleft 

marker to the parasite periphery. However, fluorescence spread to the parasitophorous vacuole only in more 

mature stages161, which does not agree with the reported timing of Maurer’s cleft biogenesis40 and is likely 

caused by overexpression of the construct. Immuno-gold staining revealed focal labelling of the 

parasitophorous vacuole membrane (PVM) with an endogenous Maurer’s cleft protein in electron 

micrographs, but labelled regions did not show any signs of membrane budding161. Since the export of 

Maurer’s cleft proteins continues upon completion of Maurer’s cleft formation and is thus largely independent 

of vacuolar budding, the mere presence of parasitophorous vacuole-associated Maurer’s cleft proteins 

cannot be regarded as evidence for ongoing Maurer’s cleft biogenesis because all exported proteins are 

expected to localize to the vacuole prior to their PTEX-dependent translocation40. 

 3D reconstruction of the parasitophorous vacuole and Maurer’s clefts has yielded conflicting evidence as 

to whether they form a lipid continuum in mature stages, which might be partially explained by the use of 

different laboratory strains36,37,162,163. The presence of parasitophorous vacuole–Maurer’s cleft junctions in 

mature parasites, however controversial, does not necessitate a vacuolar Maurer’s cleft origin as such 

junctions might be established after complete Maurer’s cleft formation. Reliable proof could be provided by 

multi-labelling immuno-electron microscopy-mediated detection of protruding but still vacuole-attached 

lamellar compartments containing an early expressed Maurer’s cleft marker. At the same time, antibodies 

against a signature parasitophorous vacuole protein should denote the vacuole, but not the nascent Maurer’s 

cleft. In the absence of such evidence, the origin of the MCs continues to be a gaping hole in our knowledge 

of Plasmodium-induced host cell make-over.  
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Box 3  Proteomics of the parasitophorous vacuole 

 A full understanding of the functional and evolutionary relevance of the Plasmodium parasitophorous 

vacuole requires detailed knowledge of its molecular makeup. Although the inability to isolate the 

parasitophorous vacuole membrane (PVM) has thus far prohibited lipidomic analysis, several studies have 

begun to shed light on the vacuolar protein composition. The first systematic proteomic investigation of the 

parasitophorous vacuole matrix exploited a combination of differential permeabilization, biotin labelling and 

mass spectrometry164. Although several established vacuolar constituents were identified, the repertoire of 

labelled proteins also contained cytoplasmic and ER-resident parasite factors. Conversely, many known 

highly expressed parasitophorous vacuole proteins evaded detection using this approach164. 

 The sequential use of pore-forming toxins and the non-ionic detergent saponin should theoretically 

permit the isolation of vacuolar matrix proteins165. The pore-forming toxins facilitate selective red blood cell 

membrane lysis and removal of host cell cytoplasm, while saponin is thought to lyse the parasitophorous 

vacuole membrane (PVM) without affecting the integrity of the parasite plasma membrane (PPM). A recent 

study describes the mapping of the Plasmodium yoelii proteome using a comparable strategy166. 

Unfortunately, confident assignment of subcellular localization is hampered by the frequent leakage of 

parasite cytoplasm across the PPM upon saponin treatment53,167. 

 With the advent of proximity-dependent biotinylation technology (BioID), the catalogue of known 

parasitophorous vacuole proteins continued to grow. In two recent studies, secreted reporter proteins were 

fused to the promiscuous biotin ligase BirA* in order to label the vacuolar compartment, thereby recovering 

several previously unknown proteins of the parasitophorous vacuole157,158. Owing to the vacuole’s interposed 

topology, proteomic analysis is complicated by the frequent off-target identification of proteins from the ER, 

Golgi apparatus, PPM and host cell compartment, necessitating independent validation157,158 (BOX 1). An 

alternative approach set out to bypass these limitations by exploiting refined prediction algorithms to detect 

signatures of vacuolar residency, including possession of a signal peptide and the absence of apicoplast 

transit peptides or export motifs, leading to the identification of three novel parasitophorous vacuole 

proteins70. 

 All published attempts to unravel the vacuole’s proteome have resulted in the discovery of previously 

unknown vacuole molecules. Owing to the inherent methodological limitations discussed above, however, 

many secreted parasite factors probably remain undetected. Interestingly, genome scale experimental 

genetics data suggest dispensable functions during asexual blood stage development for most of the newly 

identified proteins168,169. We have previously hypothesized that the presence of highly abundant yet 

dispensable proteins might provide a favourable molecular crowding effect for important vacuolar 

pathways70. 

 The overwhelming majority of the identified proteins harbour no functional annotations, pointing towards 

a plethora of tailor-made adaptations at this central host–pathogen interface. One prominent example of this 

phenomenon is the Plasmodium-specific early transcribed membrane protein family (ETRAMP) which 
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comprises a set of small and highly charged transmembrane proteins of unknown function that oligomerize in 

the PVM95,170. The Plasmodium-specific nature of most vacuolar proteins offers invaluable perspectives for 

the development of evidence-based intervention strategies that specifically target the parasite’s 

intraerythrocytic niche without harming the host. 

Glossary 

Merozoite: Invasive parasite stage, which is released during host cell egress to infect erythrocytes. 

Ring stage: Young parasite stages, which mark the onset of intraerythrocytic development after invasion. 

Trophozoite: Intraerythrocytic parasite stage characterised by rapid growth and biomass production. 

Schizont: Intracellular parasite stage that undergoes multiple rounds of nuclear division and concerted 
cytokinesis to form new daughter merozoites. 

Membrane capacitance: The ability of a biological membrane to store energy in the form of an electrical 
charge, the magnitude of which is directly proportional to the membrane surface area. 

Sec translocon: ER-resident protein complex which translocates secretory proteins from the cytoplasm 
across or into the ER membrane. 

Signal peptide: Short amino-terminal peptide of 16-30 amino acids which directs secretory proteins to the 
Sec translocon and which is cleaved upon translocation. 

Rhodamine 123: A fluorescent potentiometric dye which accumulates in mitochondria in a manner which is 
dependent on membrane polarization. 

Haemozoin: Crystals of haemoglobin-derived haem in the parasite’s food vacuole. 
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