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Abstract

We consider the asymptotics of the distribution of the capture zones associated with the islands nucleated

during submonolayer deposition onto a one-dimensional substrate. We use a convolution of the distribution

of inter-island gaps, the asymptotics of which is known for a class of nucleation models, to derive the asymp-

totics for the capture zones. The results are in broad agreement with published Monte Carlo simulation data

[Phys. Rev. E 85, 021601].
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1. Introduction

The statistical properties of islands nucleated during submonolayer deposition have attracted much recent

attention from experimentalists and theorists (see [1] for a recent review).

The nanoscale islands formed during the deposition are the building blocks for new technology, and pose

interesting challenges for the understanding and control of the nucleation and growth processes. The capture

zones of the islands, which dictate their growth rates, have been of particular interest to theorists due to their

scaling properties. A number of theoretical approaches to this topic have been developed [2–12]. Here

we extend the fragmentation theory approach [5] that describes the evolution of the inter-island gaps on a

one-dimensional substrate, to obtain the large size asymptotics of the capture zones themselves.

The fragmentation theory approach considers the distribution of gaps between point islands on a one-

dimensional substrate [5, 11]. The nucleation of a new island fragments an existing gap into two smaller

ones. The probability of this event occurring, and the proportions into which the gap is fragmented, are de-

termined by the steady state monomer density in the parent gap. This can be found from solving a diffusion

equation for randomly deposited monomers that diffuse until they are absorbed by the islands at the two

ends of the gap [5, 11].
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The work in [5] considered only critical island size i = 1, where i + 1 monomers must come together to

nucleate an immobile point island that grows in size by capturing diffusing monomers. In [11], we extended

the analysis to general values of i, i = 0, 1, 2, 3, . . .. While it has not been possible for us to find closed-

form, analytical solutions in this approach, using the work of Cheng and Redner [14], we were able to show

in [11] that the gap size distribution (GSD) φ(y) has the following asymptotics:

φ(y) ∼ yi+1 as y → 0, and (1)

φ(y) ∼ y−2 exp−cy2i+3

as y → ∞. (2)

Here y is the gap size scaled by the average gap size. Note that the arguments of [14] do not allow the

determination of the constant c (which can depend on i) in (2). In these equations and everywhere below we

use the notation f(t) ∼ g(t) as t→ a to mean that

lim
t→a

f(t)

g(t)
= K,

for a positive constantK.

Given these results, we considered the asymptotics of the capture zone distribution (CZD) P (s), defined as

P (s) = 2

∫

2s

0

φ(y)φ(2s− y) dy, (3)

where the convolution is justified by the mixing effect of subsequent nucleation events that remove the

correlations between neighbouring gaps [5]. Here too the capture zone size s is scaled by the average. From
(1) we were able to find the asymptotics of P (s) as s → 0, and subsequently showed good agreement with

Monte-Carlo simulation data [13].

However, in [11] we were only able to find the large size (s → ∞) asymptotics of P (s) only in the case of

spontaneous nucleation, i = 0:

P (s) ∼ s−9/2 exp

(

−2s3

µ3

)

as s→ ∞, (4)

where µ = 4Γ(2/3)/3.

It is the purpose of the present paper to derive the large-size asymptotics for P (s) for general critical island
size i ≥ 0, using equations (2) and (3).

In Section 2 we present our new result and its proof. In Section 3, we compare this new result with data from

our previously published Monte Carlo simulations [13], which is the only source we know of for large-size

CZD asymptotics for a range of critical island sizes.

2. Large size asymptotics of CZD for general i

Equations (2) and (3), valid for the fragmentation theory of [5], are sufficient to prove the following result:

Theorem 1. As s→ ∞, P (s) ∼ s−9/2−i exp(−2cs2i+3), where c is as in Eqn. (2).
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This is clearly consistent with Eqn. (4) for the case of i = 0.

Our proof is based on a very simple and striking property of convolutions, which we will illustrate by an

example below. Thus our arguments are a particular case of a general theorem proved by Nagaev and

Tsitsiashvili [15]. However, our reasoning is much more explicit and avoids reliance on deep probability

theory constructions of that paper.

Let us first change variables in (3) by setting y = 2sz:

P (s) = 4s

∫

1

0

φ(2sz)φ(2s(1− z)) dz.

Now let us consider the integrand, ψ(s, z) = φ(2sz)φ(2s(1 − z)). The crucial observation is that the

structure of ψ(s, z), z ∈ [0, 1], simplifies as s grows. For example, consider φ(y) = (y− 3.4y2 + 3y3)e−y2

(here the coefficients have been chosen so that the function φ is positive for all y ∈ [0,∞)). In Figure 1 we

plot ψ(0.5, z) and ψ(5, z), scaled by their global maxima:
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Figure 1: Scaled ψ(0.5, z) (solid line) and ψ(5, z) (dashed line) versus z

This is a general phenomenon: for the class of functions we are considering, as s increases, the function

ψ(·, z) acquires a global maximum at z = 1/2. Incidentally, numerical evidence shows that this is the only

critical point of ψ(·, z) for sufficiently large s, but that is not crucial for the application of Laplace’s method

[16].

Assume that φ(y) ∼ yγ exp(−cyδ), where δ > 1. To show that as s → ∞, ψ acquires a global maximum

at z = 1/2, consider the ratio ψ(s, u)/ψ(s, 1/2) for any fixed u ∈ (0, 1). Then we have

lim
s→∞

ψ(s, u)

ψ(s, 1/2)
= lim

s→∞

22γ(u(1− u))γ exp(−csδ(2δuδ + 2δ(1− u)δ − 2)) =

{

1 if u = 1/2,

0 if u 6= 1/2.
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Hence if φ(y) ∼ yγ exp(−cyδ), Iǫ is a small interval around z = 1/2, and EST stand for exponentially

small terms,

P (s) ∼ 2s

∫

Iǫ

φ(2sz)φ(2s(1− z) dz + EST,

Now putting in the asymptotic form of φ, we obtain

P (s) ∼ 16s2γ+1

∫

Iǫ

zγ(1− z)γ exp(−c(2s)δ(zδ + (1− z)δ)) dz,

and applying Laplace’s method, we have that

P (s) ∼ s2γ+1−δ/2 exp(−2csδ).

Theorem 1 is recovered by putting γ = −2 and δ = 2i+ 3.

3. Discussion

Theorem 1 provides a new result for the large size asymptotics of the CZD in the fragmentation theory

approach [5]. In [13] we presented results from Monte Carlo simulations for one-dimensional island nu-

cleation and growth during submonolayer deposition, numerically analysing the asymptotics of the capture

zone distributions. We found that in the spontaneous nucleation case i = 0, the measured exponent was

3.04 ± 0.04, very close to the value of 3 predicted by Eqn. (4). We also found higher exponents for higher

critical island sizes [13], but had concrete theoretical results to compare them to at that time.

The values we reported for the exponents were, to 2 significant figures, 3.8, 5.5 and 6.5 respectively for

i = 1, 2, 3 (see [13] for details including error estimates which are smaller than 0.1). Our predictions for

this exponent depend on the mechanism that dominates nucleation. If it is driven solely by the diffusion of

monomers on the substrate, as assumed in the original work of Blackman andMulheran [5], we predict (from

Theorem 1) exponents of 5, 7 and 9 respectively which are somewhat higher than the simulation results.

However, in [13] we observed that in practice, the simulations do not reach a truly asymptotic regime.

If nucleation is dominated by fluctuations caused by the stochastic deposition events, i in our formula is

replaced by an effective i (ieff = i − 1), yielding exponents 3, 5 and 7 respectively for i = 1, 2, 3. These
are closer to the Monte Carlo results and support the proposition that, in practice, deposition events play

a significant part in determining the capture zone distribution. In all the cases considered (i = 0, 1, 2, 3)
it is clear that our fragmentation theory approach provides a good basis for understanding the observed

behaviour.

Finally, in [6], Pimpinelli and Einstein have suggested, using the generalized Wigner surmise (GWS), that

the large-size asymptotics of CZD should have Gaussian tails, leading to an exponent of 2. In later work

[7, 8] these authors also considered the limitation of the GWS approach, while other research groups have

cast doubt on the functional form they proposed in [6] for the CZD [9–11]. Nevertheless, in light of Theorem

1, it is instructive to consider that the GWS asymptotics will arise from a GSD of the form

φ(y) ∼ yi+1 exp(−bβy
2/2)

(see [6] for the definition of the constant bβ). It would be interesting to find a fragmentation mechanism

consistent with the above form of GSD.
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