6,656 research outputs found

    No Evidence for Orbital Loop Currents in Charge Ordered YBa2_2Cu3_3O6+x_{6+x} from Polarized Neutron Diffraction

    Get PDF
    It has been proposed that the pseudogap state of underdoped cuprate superconductors may be due to a transition to a phase which has circulating currents within each unit cell. Here, we use polarized neutron diffraction to search for the corresponding orbital moments in two samples of underdoped YBa2_2Cu3_3O6+x_{6+x} with doping levels p=0.104p=0.104 and 0.123. In contrast to some other reports using polarized neutrons, but in agreement with nuclear magnetic resonance and muon spin rotation measurements, we find no evidence for the appearance of magnetic order below 300 K. Thus, our experiment suggests that such order is not an intrinsic property of high-quality cuprate superconductor single crystals. Our results provide an upper bound for a possible orbital loop moment which depends on the pattern of currents within the unit cell. For example, for the CC-θII\theta_{II} pattern proposed by Varma, we find that the ordered moment per current loop is less than 0.013 ΟB\mu_B for p=0.104p=0.104.Comment: Comments in arXiv:1710.08173v1 fully addresse

    Benefits and limitations of the Witwatersrand influenza and acute respiratory infections surveillance programme

    Get PDF
    Objective: To establish an ongoing active surveillance programme for acute respiratory infections in general, and influenza in particular.Design: A network of 16 sentinel primary health care providers furnished morbidity information and clinical specimens for virus characterisation supplemented by school absenteeism and regional mortality data.Setting: General practices, hospital outpatient departments and staff clinics in the Witwatersrand area.Participants: Subjects treated for acute respiratory infections by 7 general practitioners, 1 specialist pulmonologist,4 paediatric outpatient departments, 1 mine hospital and university, factory and institutional staff clinics. Absenteeism data were obtained from 8 primary and 6 high schools in the region (representing 9 000 pupils}.Outcome measures: Morbidity information and strain characterisation of influenza isolates as well as other viral respiratory pathogens, school absenteeism, seasonal excess mortality.Results: The most sensitive indicator of influenza activity was virus isolation, which gives an earlier warning signal of an impending epidemic than morbidity or absenteeism parameters. Both morbidity and school absenteeism provided quantitative indicators of the severity of the epidemic. Mortality from all causes showed characteristic winter increases in the 65-year-old and older population which were not seen in younger individuals. Circulating influenza viral strains matched the strains recommended for the vaccine in 1991 and 1992, but not in 1993.Conclusions: The course and extent of the annual winter influenza epidemic can be charted by means of an active surveillance programme, with sentinel primary health care providers furnishing morbidity data and clinical material from which virus isolations can be made. Antigenic characterisation of the isolates demonstrated that circulating strains may not match recommended strains in northern hemisphere-formulated vaccines and stresses the need for a southern hemisphere vaccine formulation for South Africa. Absenteeism information provides an indicator of the impact of influenza on the economy and excess mortality data emphasise the need for routine immunisation of the elderly

    The nature of the charge density waves in under-doped YBa2_2Cu3_3O6.54_{6.54} revealed by X-ray measurements of the ionic displacements

    Get PDF
    All underdoped high-temperature cuprate superconductors appear to exhibit charge density wave (CDW) order, but both the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDW in an archetypical cuprate YBa2_2Cu3_3O6.54_{6.54} at its superconducting transition temperature Tc ~ 60 K. We find that the CDWs present in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in a CDW have two components: one perpendicular to the CuO2_2 planes, and another parallel to these planes, which is out of phase with the first. The largest displacements are those of the planar oxygen atoms and are perpendicular to the CuO2_2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDW will lead to local variations in the doping (or electronic structure) giving an explicit explanation of the appearance of density-wave states with broken symmetry in scanning tunnelling microscopy (STM) and soft X-ray measurements

    Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy

    Get PDF
    To explore the doping dependence of the recently discovered charge density wave (CDW) order in YBa2Cu3Oy, we present a bulk-sensitive high-energy x-ray study for several oxygen concentrations, including strongly underdoped YBa2Cu3O6.44. Combined with previous data around the so-called 1/8 doping, we show that bulk CDW order exists at least for hole concentrations (p) in the CuO2 planes of 0.078 <~ p <~ 0.132. This implies that CDW order exists in close vicinity to the quantum critical point for spin density wave (SDW) order. In contrast to the pseudogap temperature T*, the onset temperature of CDW order decreases with underdoping to T_CDW ~ 90K in YBa2Cu3O6.44. Together with a weakened order parameter this suggests a competition between CDW and SDW orders. In addition, the CDW order in YBa2Cu3O6.44 shows the same type of competition with superconductivity as a function of temperature and magnetic field as samples closer to p = 1/8. At low p the CDW incommensurability continues the previously reported linear increasing trend with underdoping. In the entire doping range the in-plane correlation length of the CDW order in b-axis direction depends only very weakly on the hole concentration, and appears independent of the type and correlation length of the oxygen-chain order. The onset temperature of the CDW order is remarkably close to a temperature T^\dagger that marks the maximum of 1/(T_1T) in planar 63^Cu NQR/NMR experiments, potentially indicating a response of the spin dynamics to the formation of the CDW. Our discussion of these findings includes a detailed comparison to the charge stripe order in La2-xBaxCuO4.Comment: 11 pages, 5 figure

    Cut-free Calculi and Relational Semantics for Temporal STIT Logics

    Get PDF
    We present cut-free labelled sequent calculi for a central formalism in logics of agency: STIT logics with temporal operators. These include sequent systems for Ldm , Tstit and Xstit. All calculi presented possess essential structural properties such as contraction- and cut-admissibility. The labelled calculi G3Ldm and G3Tstit are shown sound and complete relative to irreflexive temporal frames. Additionally, we extend current results by showing that also Xstit can be characterized through relational frames, omitting the use of BT+AC frames

    Electrochemistry education in the twenty-first century: the current landscape in the UK, challenges and opportunities

    Get PDF
    Electrochemistry education of future researchers is crucial if we are to decarbonise economies and reach targets for net zero, and this arguably begins with education in electrochemistry within undergraduate degrees. This paper reviews the teaching of electrochemistry in UK universities at the undergraduate degree level. We review where and how electrochemical concepts are introduced into chemistry, chemical engineering and materials science programmes. We provide some motivation for this review, which was stimulated by discussions from a workshop on the ‘Future of Fundamental Electrochemistry Research in the UK’, held in 2022. We summarise briefly how consensus on UK degree programme course content has been reached and inconsistencies that remain. Electrochemistry curriculum content from a convenience sample of UK universities, and disciplines, has been collected and is summarised, with a reflection on some trends. Finally, we present some implications for policy. A roadmap is suggested to ensure that the teaching of electrochemical fundamentals is addressed in the curriculum at an appropriate level to underpin the many technically relevant applications of electrochemistry that graduates will encounter in their further education or employment

    New insights into the size and stoichiometry of the plasminogen activator inhibitor type-1¡vitronectin complex

    Get PDF
    Plasminogen activator inhibitor-type 1 (PAI-1) is the primary inhibitor of endogenous plasminogen activators that generate plasmin in the vicinity of a thrombus to initiate thrombolysis, or in the pericellular region of cells to facilitate migration and/or tissue remodeling. It has been shown that the physiologically relevant form of PAI-1 is in a complex with the abundant plasma glyco-protein, vitronectin. The interaction between vitronectin and PAI-1 is important for stabilizing the inhibitor in a reactive conformation. Although the complex is clearly significant, information is vague regarding the composition of the complex and consequences of its formation on the distribution and activity of vitronectin in vivo. Most studies have assumed a 1:1 interaction between the two proteins, but this has not been demonstrated experimentally and is a matter of some controversy since more than one PAI-1-binding site has been proposed within the sequence of vitronectin. To address this issue, competition studies using monoclonal antibodies specific for separate epitopes confirmed that the two distinct PAI-1-binding sites present on vitronectin can be occupied simultaneously. Analytical ultracentrifugation was used also for a rigorous analysis of the composition and sizes of complexes formed from purified vitronectin and PAI-1. The predominant associating species observed was high in molecular weight (M(r) ~ 320,000), demonstrating that self-association of vitronectin occurs upon interaction with PAI-1. Moreover, the size of this higher order complex indicates that two molecules of PAI-1 bind per vitronectin molecule. Binding of PAI-1 to vitronectin and association into higher order complexes is proposed to facilitate interaction with macromolecules on surfaces

    Kinks in the Presence of Rapidly Varying Perturbations

    Full text link
    Dynamics of sine-Gordon kinks in the presence of rapidly varying periodic perturbations of different physical origins is described analytically and numerically. The analytical approach is based on asymptotic expansions, and it allows to derive, in a rigorous way, an effective nonlinear equation for the slowly varying field component in any order of the asymptotic procedure as expansions in the small parameter ω−1\omega^{-1}, ω\omega being the frequency of the rapidly varying ac driving force. Three physically important examples of such a dynamics, {\em i.e.}, kinks driven by a direct or parametric ac force, and kinks on rotating and oscillating background, are analysed in detail. It is shown that in the main order of the asymptotic procedure the effective equation for the slowly varying field component is {\em a renormalized sine-Gordon equation} in the case of the direct driving force or rotating (but phase-locked to an external ac force) background, and it is {\em the double sine-Gordon equation} for the parametric driving force. The properties of the kinks described by the renormalized nonlinear equations are analysed, and it is demonstrated analytically and numerically which kinds of physical phenomena may be expected in dealing with the renormalized, rather than the unrenormalized, nonlinear dynamics. In particular, we predict several qualitatively new effects which include, {\em e.g.}, the perturbation-inducedComment: New copy of the paper of the above title to replace the previous one, lost in the midst of the bulletin board. RevTeX 3.

    Methods for Reducing False Alarms in Searches for Compact Binary Coalescences in LIGO Data

    Get PDF
    The LIGO detectors are sensitive to a variety of noise transients of non-astrophysical origin. Instrumental glitches and environmental disturbances increase the false alarm rate in the searches for gravitational waves. Using times already identified when the interferometers produced data of questionable quality, or when the channels that monitor the interferometer indicated non-stationarity, we have developed techniques to safely and effectively veto false triggers from the compact binary coalescences (CBCs) search pipeline
    • …
    corecore