24,816 research outputs found
National Transonic Facility: A review of the operational plan
The proposed National Transonic Facility (NTF) operational plan is reviewed. The NTF will provide an aerodynamic test capability significantly exceeding that of other transonic regime wind tunnels now available. A limited number of academic research program that might use the NTF are suggested. It is concluded that the NTF operational plan is useful for management, technical, instrumentation, and model building techniques available in the specialized field of aerodynamic analysis and simulation. It is also suggested that NASA hold an annual conference to discuss wind tunnel research results and to report on developments that will further improve the utilization and cost effectiveness of the NTF and other wind tunnels
Aerodynamic design and performance testing of an advanced 30 deg swept, eight bladed propeller at Mach numbers from 0.2 to 0.85
The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of from 15 to 28 percent may be realized by the use of an advanced high speed turboprop. The turboprop must be capable of high efficiency at Mach 0.8 above 10.68 km (35,000 ft) altitude if it is to compete with turbofan powered commercial aircraft. An advanced turboprop concept was wind tunnel tested. The model included such concepts as an aerodynamically integrated propeller/nacelle, blade sweep and power (disk) loadings approximately three times higher than conventional propeller designs. The aerodynamic design for the model is discussed. Test results are presented which indicate propeller net efficiencies near 80 percent were obtained at high disk loadings at Mach 0.8
CALCULATION OF THE MINIMUM NUMBER OF REPLICATE SPOTS REQUIRED FOR DETECTION OF SIGNIFICANT GENE EXPRESSION FOLD CHANGE IN MICROARRA Y EXPERIMENTS
Calculations for the number of per gene replicate spots in microarray experiments are presented for the purpose of obtaining estimates of the sampling variability present in microarray data, and for determining the minimum number of replicate spots required to achieve a high probability of detecting a significant fold change in gene expression. Our approach is based on data from control microarrays, and employs standard statistical estimation techniques. We have demonstrated the usefulness of our framework by analyzing two experimental data sets containing control array data. The minimum number of replicate spots required on a treatment array were calculated to achieve detection of a 3-fold increase in expression with 90%, 95% or 99% confidence. The inclusion of replicate spots on microarrays not only allows more accurate estimation of the variability present in an experiment, but more importantly increases the probability of detecting genes undergoing significant fold changes in expression, while substantially decreasing the probability of observing fold changes due to chance rather than true differential expression
Float-polishing process and analysis of float-polished quartz
A fluid-mechanical model is developed for the float-polishing process. In this model laminar flow between the sample and the lap results in pressure gradients at the grooves that support the sample on a fluid layer. The laminar fluid motion also produces supersmooth, damage-free surfaces. Quartz substrates for applications in high-stress environments were float polished, and their surfaces were analyzed by optical scatterometry, photoacoustic spectroscopy, and atomic force microscopy. The removal of 100 µm of material by a lapping-polishing process, with final float polishing, left low levels of subsurface damage, with a surface roughness of approximately 0.2-nm rms
New nickel-base wrought superalloy with applications up to 1253 K (1800 F)
Alloy possesses combination of high tensile strength at low and intermediate temperatures to 1033 K with good rupture strength at high temperatures to 1255 K. Alloy has promise for turbine disk application in future gas turbine engines and for wrought integrally bladed turbine wheel; thickness and weight of disk portion of wheel could be reduced
Cognitive Information Processing
Contains reports on four research projects.National Science Foundation (Grant G-16526)National Institutes of Health (Grant MH-04737-03)National Aeronautics and Space Administration (Grant NsG-496
Low- and high-frequency noise from coherent two-level systems
Recent experiments indicate a connection between the low- and high-frequency
noise affecting superconducting quantum systems. We explore the possibilities
that both noises can be produced by one ensemble of microscopic modes, made up,
e.g., by sufficiently coherent two-level systems (TLS). This implies a relation
between the noise power in different frequency domains, which depends on the
distribution of the parameters of the TLSs. We show that a distribution,
natural for tunneling TLSs, with a log-uniform distribution in the tunnel
splitting and linear distribution in the bias, accounts for experimental
observations.Comment: minor corrections, references adde
Carinae's Dusty Homunculus Nebula from Near-Infrared to Submillimeter Wavelengths: Mass, Composition, and Evidence for Fading Opacity
Infrared observations of the dusty, massive Homunculus Nebula around the
luminous blue variable Carinae are crucial to characterize the mass-loss
history and help constrain the mechanisms leading to the Great Eruption. We
present the 2.4 - 670 m spectral energy distribution, constructed from
legacy ISO observations and new spectroscopy obtained with the {\em{Herschel
Space Observatory}}. Using radiative transfer modeling, we find that the two
best-fit dust models yield compositions which are consistent with CNO-processed
material, with iron, pyroxene and other metal-rich silicates, corundum, and
magnesium-iron sulfide in common. Spherical corundum grains are supported by
the good match to a narrow 20.2 m feature. Our preferred model contains
nitrides AlN and SiN in low abundances. Dust masses range from 0.25 to
0.44 but 45 in both cases due to an
expected high Fe gas-to-dust ratio. The bulk of dust is within a 5
7 central region. An additional compact feature is detected at 390 m.
We obtain = 2.96 10 , a 25\% decline from
an average of mid-IR photometric levels observed in 1971-1977. This indicates a
reduction in circumstellar extinction in conjunction with an increase in visual
brightness, allowing 25-40\% of optical and UV radiation to escape from the
central source. We also present an analysis of CO and CO through lines, showing that the abundances are consistent with
expectations for CNO-processed material. The [C~{\sc{ii}}] line is
detected in absorption, which we suspect originates in foreground material at
very low excitation temperatures.Comment: Accepted in Ap
DNA crunching by a viral packaging motor: Compression of a procapsid-portal stalled Y-DNA substrate
AbstractMany large double-stranded DNA viruses employ high force-generating ATP-driven molecular motors to package to high density their genomes into empty procapsids. Bacteriophage T4 DNA translocation is driven by a two-component motor consisting of the procapsid portal docked with a packaging terminase-ATPase. Fluorescence resonance energy transfer and fluorescence correlation spectroscopic (FRET-FCS) studies of a branched (Y-junction) DNA substrate with a procapsid-anchoring leader segment and a single dye molecule situated at the junction point reveal that the “Y-DNA” stalls in proximity to the procapsid portal fused to GFP. Comparable structure Y-DNA substrates containing energy transfer dye pairs in the Y-stem separated by 10 or 14 base pairs reveal that B-form DNA is locally compressed 22–24% by the linear force of the packaging motor. Torsional compression of duplex DNA is thus implicated in the mechanism of DNA translocation
- …