16,496 research outputs found
Odd-frequency superconducting pairing in topological insulators
We discuss the appearance of odd-frequency spin-triplet s-wave
superconductivity, first proposed by Berezinskii [{\it JETP} {\bf 20}, 287
(1974)], on the surface of a topological insulator proximity coupled to a
conventional spin-singlet s-wave superconductor. Using both analytical and
numerical methods we show that this disorder robust odd-frequency state is
present whenever there is an in-surface gradient in the proximity induced gap,
including superconductor-normal state (SN) junctions. The time-independent
order parameter for the odd-frequency superconductor is proportional to the
in-surface gap gradient. The induced odd-frequency component does not produce
any low-energy states.Comment: 6 pages, 5 figures. v2 contains minor changes + supplementary
materia
Evolution and complexity: the double-edged sword
We attempt to provide a comprehensive answer to the question of whether, and when, an arrow of complexity emerges in Darwinian evolution. We note that this expression can be interpreted in different ways, including a passive, incidental growth, or a pervasive bias towards complexification. We argue at length that an arrow of complexity does indeed occur in evolution, which can be most reasonably interpreted as the result of a passive trend rather than a driven one. What, then, is the role of evolution in the creation of this trend, and under which conditions will it emerge? In the later sections of this article we point out that when certain proper conditions (which we attempt to formulate in a concise form) are met, Darwinian evolution predictably creates a sustained trend of increase in maximum complexity (that is, an arrow of complexity) that would not be possible without it; but if they are not, evolution will not only fail to produce an arrow of complexity, but may actually prevent any increase in complexity altogether. We conclude that, with regard to the growth of complexity, evolution is very much a double-edged sword
Triplet proximity effect and odd-frequency pairing in graphene
We study the interplay between proximity-induced superconductivity and
ferromagnetism in graphene by self-consistently solving the Bogoliubov-de
Gennes equations on the honeycomb lattice. We find that a strong triplet
proximity effect is generated in graphene, leading to odd-frequency pairing
correlations. These odd-frequency correlations are clearly manifested in the
local density of states of the graphene sheet, which can be probed via
STM-measurements. Motivated by recent experiments on SNS graphene
Josephson junctions, we also study the spectrum of Andreev-bound states formed
in the normal region due to the proximity effect. Our results may be useful for
interpreting spectroscopic data and can also serve as a guideline for future
experiments.Comment: 4 pages, 3 figures. Submitted to Physical Review
Structure, bonding and morphology of hydrothermally synthesised xonotlite
The authors have systematically investigated the role of synthesis conditions upon the structure and morphology of xonotlite. Starting with a mechanochemically prepared, semicrystalline phase with Ca/Si=1, the authors have prepared a series of xonotlite samples hydrothermally, at temperatures between 200 and 250 degrees C. Analysis in each case was by X-ray photoelectron spectroscopy, environmental scanning electron microscopy and X-ray diffraction. The authors’ use of a much lower water/solid ratio has indirectly confirmed the ‘through solution’ mechanism of xonotlite formation, where silicate dissolution is a key precursor of xonotlite formation. Concerning the role of temperature, too low a temperature (~200 degrees C) fails to yield xonotlite or leads to increased number of structural defects in the silicate chains of xonotlite and too high a temperature (>250 degrees C) leads to degradation of the xonotlite structure, through leaching of interchain calcium. Synthesis duration meanwhile leads to increased silicate polymerisation due to diminishing of the defects in the silicate chains and more perfect crystal morphologies
Loss of quantum coherence due to non-stationary glass fluctuations
Low-temperature dynamics of insulating glasses is dominated by a macroscopic
concentration of tunneling two-level systems (TTLS). The distribution of the
switching/relaxation rates of TTLS is exponentially broad, which results in
non-equilibrium state of the glass at arbitrarily long time-scales. Due to the
electric dipolar nature, the switching TTLS generate fluctuating
electromagnetic fields. We study the effect of the non-thermal slow fluctuators
on the dephasing of a solid state qubit. We find that at low enough
temperatures, non-stationary contribution can dominate the stationary (thermal)
one, and discuss how this effect can be minimized.Comment: 4 page
Single-electron transistor effect in a two-terminal structure
A peculiarity of the single-electron transistor effect makes it possible to
observe this effect even in structures lacking a gate electrode altogether. The
proposed method can be useful for experimental study of charging effects in
structures with an extremely small central island confined between tunnel
barriers like a nanometer-sized quantum dot or a macromolecule probed with a
tunneling microscope), where it is impossible to provide a gate electrode for
control of the tunnel current.Comment: 5 pages, 2 figure
Possible Observational Criteria for Distinguishing Brown Dwarfs from Planets
The difference in formation process between binary stars and planetary
systems is reflected in their composition as well as their orbital
architecture, particularly orbital eccentricity as a function of orbital
period. It is suggested here that this difference can be used as an
observational criterion to distinguish between brown dwarfs and planets.
Application of the orbital criterion suggests that with three possible
exceptions, all of the recently-discovered substellar companions discovered to
date may be brown dwarfs and not planets. These criterion may be used as a
guide for interpretation of the nature of sub-stellar mass companions to stars
in the future.Comment: LaTeX, 11 pages including 2 figures, accepted for publication in the
Astrophysical Journal Letter
Influence of temperature dependent inelastic scattering on the superconducting proximity effect
We have measured the differential resistance of mesoscopic gold wires of
different lengths connected to an aluminum superconductor as a function of
temperature and voltage. Our experimental results differ substantially from
theoretical predictions which assume an infinite temperature independent gap in
the superconductor. In addition to taking into account the temperature
dependence of the gap, we must also introduce a temperature dependent inelastic
scattering length in order to fit our data
The GEOS-3 orbit determination investigation
The nature and improvement in satellite orbit determination when precise altimetric height data are used in combination with conventional tracking data was determined. A digital orbit determination program was developed that could singly or jointly use laser ranging, C-band ranging, Doppler range difference, and altimetric height data. Two intervals were selected and used in a preliminary evaluation of the altimeter data. With the data available, it was possible to determine the semimajor axis and eccentricity to within several kilometers, in addition to determining an altimeter height bias. When used jointly with a limited amount of either C-band or laser range data, it was shown that altimeter data can improve the orbit solution
New nickel-base wrought superalloy with applications up to 1253 K (1800 F)
Alloy possesses combination of high tensile strength at low and intermediate temperatures to 1033 K with good rupture strength at high temperatures to 1255 K. Alloy has promise for turbine disk application in future gas turbine engines and for wrought integrally bladed turbine wheel; thickness and weight of disk portion of wheel could be reduced
- …