3,167 research outputs found
Role of orientation reference selection in motion sickness
Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals used to control upright posture. In particular, there is one class of subjects with a vestibular disorder known as benign paroxysmal positional vertigo (BPPV) who often are particularly sensitive to inaccurate visual information. That is, they will use visual sensory information for the control of their posture even when that visual information is inaccurate and is in conflict with accurate proprioceptive and vestibular sensory signals. BPPV has been associated with disorders of both posterior semicircular canal function and possibly otolith function. The present proposal hopes to take advantage of the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with the BPPV syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives of this proposal are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans
Role of orientation reference selection in motion sickness
The overall objective of this proposal is to understand the relationship between human orientation control and motion sickness susceptibility. Three areas related to orientation control will be investigated. These three areas are (1) reflexes associated with the control of eye movements and posture, (2) the perception of body rotation and position with respect to gravity, and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. We refer to this process as sensory selection. This proposal will attempt to quantify subjects' sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms. Measurements of reflexes, motion perception, sensory selection abilities, and motion sickness susceptibility will concentrate on pitch and roll motions since these seem most relevant to the space motion sickness problem. Vestibulo-ocular (VOR) and oculomotor reflexes will be measured using a unique two-axis rotation device developed in our laboratory over the last seven years. Posture control reflexes will be measured using a movable posture platform capable of independently altering proprioceptive and visual orientation cues. Motion perception will be quantified using closed loop feedback technique developed by Zacharias and Young (Exp Brain Res, 1981). This technique requires a subject to null out motions induced by the experimenter while being exposed to various confounding sensory orientation cues. A subject's sensory selection abilities will be measured by the magnitude and timing of his reactions to changes in sensory environments. Motion sickness susceptibility will be measured by the time required to induce characteristic changes in the pattern of electrogastrogram recordings while exposed to various sensory environments during posture and motion perception tests. The results of this work are relevant to NASA's interest in understanding the etiology of space motion sickness. If any of the reflex, perceptual, or sensory selection abilities of subjects are found to correlate with motion sickness susceptibility, this work may be an important step in suggesting a method of predicting motion sickness susceptibility. If sensory selection can provide a means to avoid sensory conflict, then further work may lead to training programs which could enhance a subject's sensory selection ability and therefore minimize motion sickness susceptibility
Role of orientation reference selection in motion sickness
Three areas related to human orientation control are investigated: (1) reflexes associated with the control of eye movements and posture; (2) the perception of body rotation and position with respect to gravity; and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. This process is referred as sensory selection. This proposal will attempt to quantify subject's sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms
Recommended from our members
Vestibular Effects on Cerebral Blood Flow
Background: Humans demonstrate a number of unique adaptations that allow for the maintenance of blood pressure and brain blood flow when upright. While several physiological systems, including cerebral autoregulation, are involved in this adaptation the unique role the vestibular system plays in helping to maintain brain blood flow is just beginning to be elucidated. In this study, we tested the hypothesis that stimulation of the vestibular system, specifically the otoliths organs, would result in changes in cerebral blood flow. Results: To test our hypothesis, we stimulated the vestibular organs of 25 healthy subjects by pitch tilt (stimulates both canals and otoliths) and by translation on a centrifuge (stimulates otoliths and not the canals) at five frequencies: 0.5, 0.25, 0.125 and 0.0625 Hz for 80 sec and 0.03125 Hz for 160 sec. Changes in cerebral flow velocity (by transcranial Doppler) and blood pressure (by Finapres) were similar during both stimuli and dependent on frequency of stimulation (P < 0.01). However, changes in cerebral blood flow were in opposition to changes in blood pressure and not fully dependent on changes in end tidal CO2. Conclusion: The experimental results support our hypothesis and provide evidence that activation of the vestibular apparatus, specifically the otolith organs, directly affects cerebral blood flow regulation, independent of blood pressure and end tidal CO2 changes
Cerebral Hypoperfusion Precedes Nausea During Centrifugation
Nausea and motion sickness are important operational concerns for aviators and astronauts. Understanding underlying mechanisms associated with motion sickness may lead to new treatments. The goal of this work was to determine if cerebral blood flow changes precede the development of nausea in motion sick susceptible subjects. Cerebral flow velocity in the middle cerebral artery (transcranial Doppler), blood pressure (Finapres) and end-tidal CO2 were measured while subjects were rotated on a centrifuge (250 degrees/sec). Following 5 min of rotation, subjects were translated 0.504 m off-center, creating a +lGx centripetal acceleration in the nasal-occipital plane. Ten subjects completed the protocol without symptoms while 5 developed nausea (4 while 6ff-center and 1 while rotating on-center). Prior to nausea, subjects had significant increases in blood pressure (+13plus or minus 3 mmHg, P less than 0.05) and cerebrovascular resistance (+46 plus or minus 17%, P less than 0.05) and decreases in cerebral flow velocity both in the second (-13 plus or minus 4%) and last minute (-22 plus or minus 5%) before symptoms (P less than 0.05). In comparison, controls demonstrated no change in blood pressure or cerebrovascular resistance in the last minute of off-center rotation and only a 7 plus or minus 2% decrease in cerebral flow velocity. All subjects had significant hypocapnia (-3.8 plus or minus 0.4 mmHg, P less than 0.05), however this hypocapnia could not fully explain the cerebral hypoperfusion associated with the development of nausea. These data indicate that reductions in cerebral blood flow precede the development of nausea. Further work is necessary to determine what role cerebral hypoperfusion plays in motion sickness and whether cerebral hypoperfusion can be used to predict the development of nausea in susceptible individuals
Vestibular effects on cerebral blood flow
Humans demonstrate a number of unique adaptations that allow the maintenance of blood pressure and brain blood flow after transition to the upright position. While these adaptations maintain heart-level mean arterial pressure similar to supine values, the brain remains ~30 cm above the heart, resulting in a ~25% decrease in perfusion pressure. To maintain brain blood flow, the cerebral vessels must dilate in response to this change in position. While several physiological systems are involved in adaptation to the upright posture, including cerebral autoregulation, the unique role that the vestibular system plays in helping to maintain brain blood flow is just beginning to be elucidated. Since the vestibular system not only assists in balance control and locomotion but provides direct information about the body's position relative to gravity, it can, within milliseconds, detect a change in posture. Thus it is possible that a vestibular signal indicating upright could assist in this necessary cerebral vasodilation. In this work we demonstrate a direct effect of vestibular activation on cerebral blood flow regulation. By stimulating the otoliths, the organs that sense gravity, using sinusoidal translation or tilt in the dark at five frequencies, we found that cerebral blood flow was modulated according to the frequency of stimulation. In addition, changes in cerebral blood flow were in opposition to blood pressure changes, likely indicating a direct effect of otolith activation on cerebral blood flow regulation. We anticipate these findings may lead to new treatment modalities for cerebral hypoperfusion under a variety of circumstances. For example, with aging there is well documented vestibular loss that might contribute to a general age-associated reduction in global cerebral blood flow. Similarly, patients with orthostatic intolerance could have vestibular impairment that exacerbates cerebral hypoperfusion when upright
Effects of Vestibular Loss on Orthostatic Responses to Tilts in the Pitch Plane
The purpose of this study was to determine the extent to which vestibular loss might impair orthostatic responses to passive tilts in the pitch plane in human subjects. Data were obtained from six subjects having chronic bilateral vestibular loss and six healthy individuals matched for age, gender, and body mass index. Vestibular loss was assessed with a comprehensive battery including dynamic posturography, vestibulo-ocular and optokinetic reflexes, vestibular evoked myogenic potentials, and ocular counterrolling. Head up tilt tests were conducted using a motorized two-axis table that allowed subjects to be tilted in the pitch plane from either a supine or prone body orientation at a slow rate (8 deg/s). The sessions consisted of three tilts, each consisting of20 min rest in a horizontal position, tilt to 80 deg upright for 10 min, and then return to the horizontal position for 5 min. The tilts were performed in darkness (supine and prone) or in light (supine only). Background music was used to mask auditory orientation cues. Autonomic measurements included beat-to-beat recordings of blood pressure (Finapres), heart rate (ECG), cerebral blood flow velocity in the middle cerebral artery (transcranial Doppler), end tidal CO2, respiratory rate and volume (Respritrace), and stroke volume (impedance cardiography). For both patients and control subjects, cerebral blood flow appeared to exhibit the most rapid adjustment following transient changes in posture. Outside of a greater cerebral hypoperfusion in patients during the later stages of tilt, responses did not differ dramatically between the vestibular loss and control subjects, or between tilts performed in light and dark room conditions. Thus, with the 'exception of cerebrovascular regulation, we conclude that orthostatic responses during slow postural tilts are not substantially impaired in humans following chronic loss of vestibular function, a result that might reflect compensation by nonvisual graviceptor inputs (e.g., somatosensory) or other circulatory reflex mechanisms
FAR and NEAR Target Dynamic Visual Acuity: A Functional Assessment of Canal and Otolith Performance
Upon their return to earth, astronauts experience the effects of vestibular adaptation to microgravity. The postflight changes in vestibular information processing can affect postural and locomotor stability and may lead to oscillopsia during activities of daily living. However, it is likely that time spent in microgravity affects canal and otolith function differently. As a result, the isolated rotational stimuli used in traditional tests of canal function may fail to identify vestibular deficits after spaceflight. Also, the functional consequences of deficits that are identified often remain unknown. In a gaze control task, the relative contributions of the canal and otolith organs are modulated with viewing distance. The ability to stabilize gaze during a perturbation, on visual targets placed at different distances from the head may therefore provide independent insight into the function of this systems. Our goal was to develop a functional measure of gaze control that can also offer independent information about the function of the canal and otolith organs
Probing the origin of the dark material on Iapetus
Among the icy satellites of Saturn, Iapetus shows a striking dichotomy
between its leading and trailing hemispheres, the former being significantly
darker than the latter. Thanks to the VIMS imaging spectrometer on-board
Cassini, it is now possible to investigate the spectral features of the
satellites in Saturn system within a wider spectral range and with an enhanced
accuracy than with previously available data. In this work, we present an
application of the G-mode method to the high resolution, visible and near
infrared data of Phoebe, Iapetus and Hyperion collected by Cassini/VIMS, to
search for compositional correlations. We also present the results of a
dynamical study on the efficiency of Iapetus in capturing dust grains
travelling inward in Saturn system to evaluate the viability of
Poynting-Robertson drag as the physical mechanism transferring the dark
material to the satellite. The results of spectroscopic classification are used
jointly with the ones of the dynamical study to describe a plausible physical
scenario for the origin of Iapetus' dichotomy. Our work shows that mass
transfer from the outer Saturnian system is an efficient mechanism,
particularly for the range of sizes hypothesised for the particles composing
the newly discovered outer ring around Saturn. Both spectral and dynamical data
indicate Phoebe as the main source of the dark material. However, we suggest a
multi-source scenario where now extinct prograde satellites and the disruptive
impacts that generated the putative collisional families played a significant
role in supplying the original amount of dark material.Comment: 20 pages, 4 tables, 11 figures, major revision (manuscript extended
and completed, figures added and corrected, new results added), minor
revision and finalization of author list, moderate revision (update of the
manuscript following reviewer's feedback and discovery of the new Saturnian
outer ring
Contrasting consequences of climate change for migratory geese:Predation, density dependence and carryover effects offset benefits of high-arctic warming
Climate change is most rapid in the Arctic, posing both benefits and challenges for migratory herbivores. However, population-dynamic responses to climate change are generally difficult to predict, due to concurrent changes in other trophic levels. Migratory species are also exposed to contrasting climate trends and density regimes over the annual cycle. Thus, determining how climate change impacts their population dynamics requires an understanding of how weather directly or indirectly (through trophic interactions and carryover effects) affects reproduction and survival across migratory stages, while accounting for density dependence. Here, we analyse the overall implications of climate change for a local non-hunted population of high-arctic Svalbard barnacle geese, Branta leucopsis, using 28 years of individual-based data. By identifying the main drivers of reproductive stages (egg production, hatching and fledging) and age-specific survival rates, we quantify their impact on population growth. Recent climate change in Svalbard enhanced egg production and hatching success through positive effects of advanced spring onset (snow melt) and warmer summers (i.e. earlier vegetation green-up) respectively. Contrastingly, there was a strong temporal decline in fledging probability due to increased local abundance of the Arctic fox, the main predator. While weather during the non-breeding season influenced geese through a positive effect of temperature (UK wintering grounds) on adult survival and a positive carryover effect of rainfall (spring stopover site in Norway) on egg production, these covariates showed no temporal trends. However, density-dependent effects occurred throughout the annual cycle, and the steadily increasing total flyway population size caused negative trends in overwinter survival and carryover effects on egg production. The combination of density-dependent processes and direct and indirect climate change effects across life history stages appeared to stabilize local population size. Our study emphasizes the need for holistic approaches when studying population-dynamic responses to global change in migratory species.</p
- …