221 research outputs found

    UV (IUE) spectra of the central stars of high latitude planetary nebulae Hb7 and Sp3

    Get PDF
    We present an analysis of the UV (IUE) spectra of the central stars of Hb7 and Sp3. Comparison with the IUE spectrum of the standard star HD 93205 leads to a spectral classification of O3V for these stars, with an effective temperature of 50,000 K. From the P-Cygni profiles of CIV (1550 A), we derive stellar wind velocities and mass loss rates of -1317 km/s +/- 300 km/s and 2.9X10^{-8} solar mass yr^{-1} and -1603 km/s +/- 400 km/s and 7X10^{-9} solar mass yr^{-1} for Hb7 and Sp3 respectively. From all the available data, we reconstruct the spectral energy distribution of Hb7 and Sp3.Comment: 4 pages, 3 figures, latex, accepted for publication in Astronomy & Astrophysic

    Spectral analysis of the sdO K 648, the exciting star of the planetary nebula Ps 1 in the globular cluster M 15 (NGC 7078)

    Full text link
    We present a spectral analysis of the sdO central star K 648 based on medium-resolution optical and high-resolution UV spectra. The photospheric parameters are determined by means of state-of-the-art NLTE model atmosphere techniques. We found Teff = 39 +/- 2 kK and log g = 3.9 +/- 0.2. The helium (He/H=0.08) and oxygen (O/H=0.001) abundances are about solar while carbon is enriched by a factor of 2.5 (C/H=0.001). Nitrogen (N/H = 10**(-6), [N/H] = -2.0) appears at a sub-solar value. However, these metal abundances are much higher than the cluster's metallicity M 15: [Fe/H] = -2.25). The surface composition appears to be a mixture of the original hydrogen-rich material and products of helium burning (3 alpha process) which have been mixed up to the surface. The abundances of He, C, and N are consistent with the nebular abundance, while O is considerably more abundant in the photosphere than in the nebula. From a comparison of its position in the log Teff - log g plane with evolutionary calculations a mass of 0.57 (+0.02, -0.01) Msun and a luminosity of 3810 +/- 1200 Lsun are deduced. Our spectroscopic distance d = 11.1 (+2.4, -2.9) kpc is in agreement with the distance of M 15 as determined by Alves et al. (2000). From the GHRS spectra we measure a radial velocity of vrad = -130 km/sec.Comment: 8 pages, 13 figure

    Post-AGB Stars in Globular Clusters and Galactic Halos

    Get PDF
    We discuss three aspects of post-AGB (PAGB) stars in old populations. (1) HST photometry of the nucleus of the planetary nebula (PN) K 648 in the globular cluster (GC) M15 implies a mass of 0.60 Msun, in contrast to the mean masses of white dwarfs in GCs of ~0.5 Msun. This suggests that K 648 is descended from a merged binary, and we infer that single Pop II stars do not produce visible PNe. (2) Yellow PAGB stars are the visually brightest stars in old populations (Mv ~ -3.3) and are easily recognizable because of their large Balmer jumps; thus they show great promise as a Pop II standard candle. Two yellow PAGB stars in the GC NGC 5986 have the same V magnitudes to within +/-0.05 mag, supporting an expected narrow luminosity function. (3) Using CCD photometry and a u filter lying below the Balmer jump, we have detected yellow PAGB stars in the halo of M31 and in its dwarf elliptical companion NGC 205. With the Milky Way zero point, we reproduce the Cepheid distance to M31, and find that NGC 205 is ~100 kpc further away than M31. The star counts imply a yellow PAGB lifetime of about 25,000 yr, and their luminosities imply masses near 0.53 Msun.Comment: 6 pages, 2 figures. To appear in proceedings of Torun, Poland, workshop on "Post-AGB Objects (Proto-Planetary Nebulae) as a Phase of Stellar Evolution," ed. S.K. Gorn

    Birth and early evolution of a planetary nebula

    Get PDF
    The final expulsion of gas by a star as it forms a planetary nebula --- the ionized shell of gas often observed surrounding a young white dwarf --- is one of the most poorly understood stages of stellar evolution. Such nebulae form extremely rapidly (about 100 years for the ionization) and so the formation process is inherently difficult to observe. Particularly puzzling is how a spherical star can produce a highly asymmetric nebula with collimated outflows. Here we report optical observations of the Stingray Nebula which has become an ionized planetary nebula within the past few decades. We find that the collimated outflows are already evident, and we have identified the nebular structure that focuses the outflows. We have also found a companion star, reinforcing previous suspicions that binary companions play an important role in shaping planetary nebulae and changing the direction of successive outflows.Comment: 9 pages + 3 figures. To appear in Nature, 2 April 199

    Chandra and FUSE spectroscopy of the hot bare stellar core H1504+65

    Full text link
    H1504+65 is an extremely hot hydrogen-deficient white dwarf with an effective temperature close to 200,000 K. We present new FUV and soft X-ray spectra obtained with FUSE and Chandra, which confirm that H1504+65 has an atmosphere primarily composed of carbon and oxygen. The Chandra LETG spectrum (60-160 Angstroem) shows a wealth of photospheric absorption lines from highly ionized oxygen, neon, and - for the first time identified in this star - magnesium and suggests relatively high Ne and Mg abundances. This corroborates an earlier suggestion that H1504+65 represents a naked C/O stellar core or even the C/O envelope of an O-Ne-Mg white dwarf.Comment: 15 pages, 10 figures, accepted for publication in A&

    Luminosities of AGB Variables

    Get PDF
    The prevailing evidence suggests that most large-amplitude AGB variables follow the period luminosity (PL) relation that has been established for Miras in the LMC and galactic globular clusters. Hipparcos observations indicate that most Miras in the solar neighbourhood are consistent with such a relation. There are two groups of stars with luminosities that are apparently greater than the PL relation would predict: (1) in the LMC and SMC there are large amplitude variables, with long periods, P> 420 days, which are probably undergoing hot bottom burning, but which are very clearly more luminous than the PL relation (these are visually bright and are likely to be among the first stars discovered in more distant intermediate age populations); (2) in the solar neighbourhood there are short period, P<235 days, red stars which are probably more luminous than the PL relation. Similar short-period red stars, with high luminosities, have not been identified in the Magellanic Clouds.Comment: 8 pages, 2 figure, to be published in Mass-Losing Pulsating Stars and their Circumstellar Matter, Y. Nakada & M. Honma (eds) Kluwer ASSL serie
    • …
    corecore