24 research outputs found

    Structure and diffusion in amorphous aluminium silicate: A molecular dynamics computer simulation

    Full text link
    The amorphous aluminium silicate (Al2O3)2(SiO2) [AS2] is investigated by means of large scale molecular dynamics computer simulations. We consider fully equilibrated melts in the temperature range 6100K >= T >= 2300K as well as glass configurations that were obtained from cooling runs from T=2300K to 300K with a cooling rate of about 10^12K/s. Already at temperatures as high as 4000K, most of the Al and Si atoms are four-fold coordinated by oxygen atoms. Thus, the structure of AS2 is that of a disordered tetrahedral network. The packing of AlO4 tetrahedra is very different from that of SiO4 tetrahedra in that Al is involved with a relatively high probability in small-membered rings and in triclusters in which an O atom is surrounded by four cations. We find as typical configurations two-membered rings with two Al atoms in which the shared O atoms form a tricluster. On larger length scales, the system shows a microphase separation in which the Al-rich network structure percolates through the SiO2 network. The latter structure gives rise to a prepeak in the static structure factor at a wavenumber q=0.5\AA^{-1}. The comparison of experimental X-ray data with the results from the simulation shows a good agreement for the structure function. The diffusion dynamics in AS2 is found to be much faster than in SiO2. We show that the self-diffusion constants for O and Al are very similar and that they are by a factor of 2-3 larger than the one for Si.Comment: 30 pages of Latex, 13 figure

    Structure of sticky-hard-sphere random aggregates: The viewpoint of contact coordination and tetrahedra

    Get PDF
    International audienceWe study more than 10 4 random aggregates of 10 6 monodisperse sticky hard spheres each, generated by various static algorithms. Their packing fraction varies from 0.370 up to 0.593. These aggregates are shown to be based on two types of disordered structures: random regular polytetrahedra and random aggregates, the former giving rise to δ peaks on pair distribution functions. Distortion of structural (Delaunay) tetrahedra is studied by two parameters, which show some similarities and some differences in terms of overall tendencies. Isotropy of aggregates is characterized by the nematic order parameter. The overall structure is then studied by distinguishing spheres in function of their contact coordination number (CCN). Distributions of average CCN around spheres of a given CCN value show trends that depend on packing fraction and building algorithms. The radial dependence of the average CCN turns out to be dependent upon the CCN of the central sphere and shows discontinuities that resemble those of the pair distribution function. Moreover, it is shown that structural details appear when the CCN is used as pseudochemical parameter, such as various angular distribution of bond angles, partial pair distribution functions, Ashcroft-Langreth and Bhatia-Thornton partial structure factors. These allow distinguishing aggregates with the same values of packing fraction or average tetrahedral distortion or even similar global pair distribution function, indicative of the great interest of paying attention to contact coordination numbers to study more precisely the structure of random aggregates

    Sperimagnetism in Fe(78)Er(5)B(17) and Fe(64)Er(19)B(17) metallic glasses: II. Collinear components and ferrimagnetic compensation

    Get PDF
    Magnetization measurements on an Fe(64)Er(19)B(17) glass and polarized-beam neutron scattering measurements on Fe(78)Er(5)B(17) and Fe(64)Er(19)B(17) were described in part I. The finite spin-flip neutron scattering cross sections were calculated using a sperimagnetic structure based on random cone arrangements of the magnetic moments. The temperature variation of the cross sections of Fe(64)Er(19)B(17) suggested that a compensated sperimagnetic phase existed at T(comp). The analysis of the non-spin-flip neutron scattering cross sections is described here in part II. Two spin-dependent total structure factors S(+/-+/-). (Q) were defined from these cross sections and, despite the limited range of the data 0.5 angstrom(-1) , are zero on both sublattices in the compensated sperimagnetic structure at T(comp). The pre-peak in the spin-dependent total structure factors at 112 K showed that it originated in the atomic structure and it may involve Fe-Er-Fe 'collineations' at a radial distance of approximate to 6.0 angstrom. Finally, the RDF(+/-+/-) (r) of Fe(64)Er(19)B(17) at 180 K and of Fe(78)Er(5)B(17) at 2 K show that both glasses have the (mu(Fe) UP:mu(Er) DOWN) structure like the (Fe, Tb)(83)B(17) collinear ferrimagnets

    Découverte de deux puits antiques à Combas (Gard). Contribution à l'étude comparative des puits antiques dans la cité de Nîmes

    No full text
    Bessac Jean-Claude, Bletry-Sébé Sylvie, Bonnaud Roland, Maebe J., Thouzellier J.-P. Découverte de deux puits antiques à Combas (Gard). Contribution à l'étude comparative des puits antiques dans la cité de Nîmes. In: Revue archéologique de Narbonnaise, tome 17, 1984. pp. 187-222

    034. Matthew 25:31-40

    No full text
    Chapel Sermon by Jeffrey Oschwald from Acts 17 on Wednesday, November 11, 2015
    corecore