12 research outputs found

    Water and magmas: insights about the water solution mechanisms in alkali silicate melts from infrared, Raman, and 29 Si solid-state NMR spectroscopies

    Get PDF
    Degassing of water during the ascent of hydrous magma in a volcanic edifice produces dramatic changes in the magma density and viscosity. This can profoundly affect the dynamics of volcanic eruptions. The water exsolution history, in turn, is driven by the water solubility and solution mechanisms in the silicate melt. Previous studies pointed to dissolved water in silicate glasses and melts existing as molecules (H2Omol species) and hydroxyl groups, OH. These latter OH groups commonly are considered bonded to Si4+ but may form other bonds, such as with alkali or alkaline-earth cations, for instance. Those forms of bonding influence the structure of hydrous melts in different ways and, therefore, their properties. As a result, exsolution of water from magmas may have different eruptive consequences depending on the initial bonding mechanisms of the dissolved water. However, despite their importance, the solution mechanisms of water in silicate melts are not clear. In particular, how chemical composition of melts affects water solubility and solution mechanism is not well understood. In the present experimental study, components of such information are reported via determination of how water interacts with the cationic network of alkali (Li, Na, and K) silicate quenched melts. Results from 29Si single-pulse magic-angle spinning nuclear magnetic resonance (29Si SP MAS NMR), infrared, and Raman spectroscopies show that decreasing the ionic radius of alkali metal cation in silicate melts results in decreasing fraction of water dissolved as OH groups. The nature of OH bonding also changes as the alkali ionic radius changes. Therefore, as the speciation and bonding of water controls the degree of polymerization of melts, water will have different effects on the transport properties of silicate melts depending on their chemical composition. This conclusion, in turn, may affect volcanic phenomena related to the viscous relaxation of hydrous magmas, such as for instance the fragmentation process that occurs during explosive eruptions

    An electron microscopic study of gas condensates in the system Mg-Si-O-H

    Get PDF
    Condensates of MgSiO_3 and SiO_2 from a gas formed by evaporation of enstatite at an H_2 pressure of 4.4×10^ bar and a temperature of 1525℃ by B. O. MYSEN and I. KUSHIRO (Am. Mineral. (in press), 1988) and I. KUSHIRO and B. O. MYSEN (Advances in Physical Geochemistry, New York, Springer (in press), 1988) were investigated with an analytical transmission electron microscope (ATEM), a scanning electron microscope (SEM) and an electron probe microanalyzer (EPMA). With decreasing temperature at an approximately constant total pressure the Mg/(Mg+Si) atomic ratio of the condensate (mixture of MgSiO_3 and SiO_2 polymorphs) decreases first, then increases, and finally reaches a constant value. This compositional change of the condensate is inconsistent with the equilibrium condensation model. The TEM studies suggest that metastable condensation of coesite and probably of protoenstatite and cristobalite took place. Coesite probably condensed by heterogeneous nucleation on protoenstatite. Fibrous quartz was also formed by heterogeneous nucleation on molybdenum fibers which condensed from a molybdenum vapor by a partial evaporation of a Knudsen cell used in the experiment. Heterogeneous nucleation might have played an important role in condensation process in the solar nebula. The texture of the experimental clinopyroxene condensate is different from that in interplanetary dust particles (J. P. BRADLEY et al., Nature, 301,473,1983)

    Solution behavior of reduced C-O-H volatiles in silicate melts at high pressure and temperature

    Get PDF
    The solubility and solution mechanisms of reduced Csingle bondOsingle bondH volatiles in Na2Osingle bondSiO2 melts in equilibrium with a (H2 + CH4) fluid at the hydrogen fugacity defined by the iron-wüstite + H2O buffer [fH2(IW)] have been determined as a function of pressure (1–2.5 GPa) and silicate melt polymerization (NBO/Si: nonbridging oxygen per silicon) at 1400 °C. The solubility, calculated as CH4, increases from ∼0.2 wt% to ∼0.5 wt% in the melt NBO/Si-range ∼0.4 to ∼1.0. The solubility is not significantly pressure-dependent, probably because fH2(IW) in the 1–2.5 GPa range does not vary greatly with pressure. Carbon isotope fractionation between methane-saturated melts and (H2 + CH4) fluid varied by ∼14‰ in the NBO/Si-range of these melts. The (C..H) and (O..H) speciation in the quenched melts was determined with Raman and 1H MAS NMR spectroscopy. The dominant (C..H)-bearing complexes are molecular methane, CH4, and a complex or functional group that includes entities with Ctriple bond; length of mdashCsingle bondH bonding. Minor abundance of complexes that include Sisingle bondOsingle bondCH3 bonding is tentatively identified in some melts. There is no spectroscopic evidence for Sisingle bondC or Sisingle bondCH3. Raman spectra indicate silicate melt depolymerization (increasing NBO/Si). The [CH4/Ctriple bond; length of mdashCsingle bondH]melt abundance ratio is positively correlated with NBO/Si, which is interpreted to suggest that the (Ctriple bond; length of mdashCsingle bondH)-containing structural entity is bonded to the silicate melt network structure via its nonbridging oxygen. The ∼14‰ carbon isotope fractionation change between fluid and melt is because of the speciation changes of carbon in the melt

    In situ study at high pressure and temperature of the environment of water in hydrous Na and Ca aluminosilicate melts and coexisting aqueous fluids

    No full text
    The bonding and speciation of water dissolved in Na silicate and Na and Ca aluminosilicate melts were inferred from in situ Raman spectroscopy of the samples, in hydrothermal diamond anvil cells, while at crustal temperature and pressure conditions. Raman data were also acquired on Na silicate and Na and Ca aluminosilicate glasses, quenched from hydrous melts equilibrated at high temperature and pressure in a piston cylinder apparatus. In the hydrous melts, temperature strongly influences O-H stretching ν(O-H) signals, reflecting its control on the bonding of protons between different molecular complexes. Pressure and melt composition effects are much smaller and difficult to discriminate with the present data. However, the chemical composition of the melt + fluid system influences the differences between the ν(O-H) signals from the melts and the fluids and, hence, between their hydrogen partition functions. Quenching modifies the O-H stretching signals: strong hydrogen bonds form in the glasses below the glass transition temperature Tg, and this phenomenon depends on glass composition. Therefore, glasses do not necessarily record the O-H stretching signal shape in melts near Tg. The melt hydrogen partition function thus cannot be assessed with certainty using O-H stretching vibration data from glasses. From the present results, the ratio of the hydrogen partition functions of hydrous silicate melts and aqueous fluids mostly depends on temperature and the bulk melt + fluid system chemical composition. This implies that the fractionation of hydrogen isotopes between magmas and aqueous fluids in water-saturated magmatic systems with differences in temperature and bulk chemical composition will be different

    Silicate glasses and melts /

    No full text
    Silicate Glasses and Melts, Second Edition describes the structure-property-composition relationships for silicate glasses and melts from a geological and industrial perspective. Updated sections include (i) characterization of silicate melt and COHN fluid structure (with and without dissolved silicate components) with pressure, temperature, and redox conditions and responses of structural variables to chemical composition, (ii) determination of solubility and solution mechanisms of COHN volatiles in silicate melts and minerals and of solubility and solution mechanisms of silicate components in COHN fluids, and (iii) effects of very high pressure on structure and properties of melts and glasses. This new book is an essential resource for researchers in a number of fields, including geology, geophysics, geoscience, volcanology, material science, glass science, petrology and mineralogy.Online resource; title from PDF title page (EBSCO, Dec. 4, 2018).Silicate Glasses and Melts, Second Edition describes the structure-property-composition relationships for silicate glasses and melts from a geological and industrial perspective. Updated sections include (i) characterization of silicate melt and COHN fluid structure (with and without dissolved silicate components) with pressure, temperature, and redox conditions and responses of structural variables to chemical composition, (ii) determination of solubility and solution mechanisms of COHN volatiles in silicate melts and minerals and of solubility and solution mechanisms of silicate components in COHN fluids, and (iii) effects of very high pressure on structure and properties of melts and glasses. This new book is an essential resource for researchers in a number of fields, including geology, geophysics, geoscience, volcanology, material science, glass science, petrology and mineralogy.Elsevie

    Water solution mechanism in calcium aluminosilicate glasses and melts: insights from in and ex situ Raman and {}^{29}\protect \text{Si} NMR spectroscopy

    No full text
    New Raman and NMR spectroscopy data on hydrous Ca aluminosilicate melts and glasses, with eutectic quartz–anorthite–wollastonite composition, are presented here. The glasses were obtained by rapid quench of melts equilibrated at high P and high T in a piston–cylinder apparatus. In situ Raman observations of the structure of the melts were also performed during hydrothermal diamond cell experiments. Using the intensities of the ∼860 cm−1{\sim }860~\text{cm}^{-1} and ∼1630 cm−1{\sim }1630~\text{cm}^{-1} Raman signals, respectively assigned to vibrations of T–OH and H2Omol\text{H}_2\text{O}_{\mathrm{mol}} species, we determined the speciation of water in the glasses. T–OH and H2Omol\text{H}_2\text{O}_{\mathrm{mol}} values compare well with those determined from infrared (IR) spectra, except above ∼5{\sim }5 wt% total water where IR determinations actually underestimate the proportion of hydroxyl groups. The analysis of the polarized Raman spectra and of the 29Si{}^{29}\text{Si} MAS NMR spectra of the hydrous glasses suggests limited changes in glass polymerization with variations in dissolved water content. However, at high temperatures, in situ Raman spectroscopy observations indicate that the hydrous melt structure differs very strongly from that of a glass containing a comparable concentration of dissolved water. Because of this, this study reinforces the fact that using glass data to try understanding high temperature processes in hydrous melts, like viscous flow or water diffusion toward bubbles during volcanic degassing, may not be very appropriate

    Intramolecular hydrogen isotope exchange inside silicate melts – The effect of deuterium concentration

    No full text
    Tracing the deep geological water cycle requires knowledge of the hydrogen isotope systematics between and within hydrous materials. For quenched hydrous alkali-silicate melts, hydrogen NMR reveals a distinct heterogeneity in the distribution of stable hydrogen isotopes (D, H) within the silicate tetrahedral network, where deuterons concentrate strongly in network regions that are associated with alkali cations. Previous hydrogen NMR studies performed in the sodium tetrasilicate system (Na2O x 4SiO2, NS4) with a 1:1 D2O/H2O ratio showed on average 1300 ‰ deuterium enrichment in the alkali-associated network, but the effect on varying bulk D2O/H2O ratios on this intramolecular isotope effect remained unconstrained. Experiments in the hydrous sodium tetrasilicate system with 8 wt% bulk water and varying bulk D2O/H2O ratios were performed at 1400 °C and 1.5 GPa. It is found that both hydrogen isotopes preferably partition into the silicate network that is associated with alkali ions. The partitioning is always stronger for the deuterated than for the protonated hydrous species. The relative enrichment of deuterium over protium in the alkali-associated network, i.e., the intramolecular isotope effect, correlates positively with the D2O/H2O bulk ratio of the hydrous NS4 system. Modeled for natural deuterium abundance (D/H near 1.56 × 10−4), a 1.4-fold (c. 340 ‰) deuterium enrichment in the alkali-associated silicate network is predicted. The partitioning model further predicts a positive correlation between the bulk water content of the silicate melt and the intramolecular deuterium partitioning into the alkali-associated silicate network. Such heterogeneities may explain the magnitude and direction of hydrogen isotope fractionation in hydrous silicate melts coexisting with silicate-saturated fluids. As such, this intramolecular isotope effect appears to be an effective mechanism for deuterium separation, particularly in hydrous magmatic settings, such as subduction zones.ISSN:0009-2541ISSN:1872-683

    Structure and properties of alkali aluminosilicate glasses and melts: insights from deep learning

    Get PDF
    Aluminosilicate glasses and melts are of paramount importance for geo- and materials sciences. They include most magmas, and are used to produce a wide variety of everyday materials, from windows to smartphone displays. Despite this importance, no general model exists with which to predict the atomic structure, thermodynamic and viscous properties of aluminosilicate melts. To address this, we introduce a deep learning framework, ‘i-Melt’, which combines a deep artificial neural network with thermodynamic equations. It is trained to predict 18 different latent and observed properties of melts and glasses in the K2O-Na2O-Al2O3-SiO2 system, including configurational entropy, viscosity, optical refractive index, density, and Raman signals. Viscosity can be predicted in the 100-1015 log10 Pa·s range using five different theoretical frameworks (Adam-Gibbs, Free Volume, MYEGA, VFT, Avramov-Milchev), with a precision equal to, or better than, 0.4 log10 Pa·s on unseen data. Density and optical refractive index (through the Sellmeier equation) can be predicted with errors equal or lower than 0.02 and 0.006, respectively. Raman spectra for K2O-Na2O-Al2O3-SiO2 glasses are also predicted, with a relatively high mean error of ∼25 % due to the limited data set available for training. Latent variables can also be predicted with good precisions. For example, the glass transition temperature, Tg, can be predicted to within 19 K, while the melt configurational entropy at the glass transition, Sconf(Tg), can be predicted to within 0.8 J mol-1 K-1. Applied to rhyolite compositions, i-Melt shows that the rheological threshold separating explosive and effusive eruptions correlates with an increase in the fraction of non-bridging oxygens in rhyolite melts as their alkali/Al ratio becomes larger than 1. Exploring further the effect of the K/(K+Na) ratio on the properties of alkali aluminosilicate melts with compositions varying along a simplified alkali magmatic series trend, we observe that K-rich melts have systematically different structures and higher viscosities compared to Na-rich melts. Combined with the effects of the K/(K+Na) ratio on other parameters, such as the solubility, solution mechanisms and speciation of volatile elements, this could ultimately influence the eruptive dynamics of volcanic systems emitting Na-rich or K-rich alkali magmas
    corecore