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Abstract

Aluminosilicate glasses and melts are of paramount importance for geo- and materials sciences. 

They include most magmas, and are used to produce a wide variety of everyday materials, from 

windows to smartphone displays. Despite this importance, no general model exists with which 

to predict the atomic structure, thermodynamic and viscous properties of aluminosilicate melts. 

To address this, we introduce a deep learning framework, ‘i-Melt’,  which combines a deep 

artificial neural network with thermodynamic equations. It is trained to predict 18 different 

latent and observed properties of melts and glasses in the K2O-Na2O-Al2O3-SiO2 system, 

including configurational entropy, viscosity, optical refractive index, density, and Raman signals. 

Viscosity can be predicted in the 100-1015 log10 Pa·s range using five different theoretical 

frameworks (Adam-Gibbs, Free Volume, MYEGA, VFT, Avramov-Milchev), with a precision equal 

to, or better than, 0.4 log10 Pa·s on unseen data. Density and optical refractive index (through 

the Sellmeier equation) can be predicted with errors equal or lower than 0.02 and 0.006, 

respectively.  Raman spectra for K2O-Na2O-Al2O3-SiO2 glasses are also predicted, with a 

relatively high mean error of ~25 % due to the limited data set available for training.  Latent 

variables can also be predicted with good precisions. For example, the glass transition 

temperature, Tg, can be predicted to within 19 K, while the melt configurational entropy at the 

glass transition, Sconf(Tg), can be predicted to within 0.8 J mol-1 K-1. 

mailto:lelosq@ipgp.fr
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Applied to rhyolite compositions, i-Melt shows that the rheological threshold separating 

explosive and effusive eruptions correlates with an increase in the fraction of non-bridging 

oxygens in rhyolite melts as their alkali/Al ratio becomes larger than 1. Exploring further the 

effect of the K/(K+Na) ratio on the properties of alkali aluminosilicate melts with compositions  

varying along a simplified alkali magmatic series trend, we observe that K-rich melts have 

systematically different structures and higher viscosities compared to Na-rich melts. Combined 

with the effects of the K/(K+Na) ratio on other parameters, such as the solubility, solution 

mechanisms and speciation of volatile elements, this could ultimately influence the eruptive 

dynamics of volcanic systems emitting Na-rich or K-rich alkali magmas.
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1. Introduction

How do molten silicates move? How do they exchange heat with other media? How do 

they crystallize? Questions such as these underpin many practical problems, ranging from the 

dynamics of volcanic eruptions (Dingwell, 1996) and the formation of igneous rocks (Bowen, 

1928), to the manufacture of novel glass, glass-ceramic and ceramic materials, including the 

development of enhanced technological glass materials suitable for smartphone screens 

(Varshneya and Bihuniak, 2017). To address such questions, knowledge of melt and glass 

physical properties, such as viscosity, heat capacity and entropy, is necessary. These properties, 

in turn, are ultimately governed by the liquid’s composition and, therefore, atomic/ionic 

structure (see for reviews Le Losq et al., 2019b; Mysen and Richet, 2019). Some properties, 

such as silicate melt and glass heat capacity, can be predicted reasonably well with existing 

models (e.g., see for heat capacity Stebbins et al., 1984; Richet and Bottinga, 1985; Richet, 

1987; Tangeman and Lange, 1998; Webb, 2008; Giordano and Russell, 2017).  However, other 

properties are more difficult to model. This includes viscosity, because of its complex 

dependence on temperature and melt composition. Silicate melt viscosity variations with 

temperature, T, are, in most cases, non-Arrhenian. At constant T, viscosity can exhibit large and 

non-linear variations with changing melt composition, particularly if T is in the supercooled 

temperature domain. This domain is located well below the liquidus, close to the glass 

transition temperature, which separates melts from glasses. Such a situation is unfortunate 

because viscosity is of great interest: it influences not only volcanic processes (Dingwell, 1996; 

Papale, 1999; Gonnermann and Manga, 2013; Gonnermann, 2015; Cassidy et al., 2018), but 

also glass-forming processes in the glass manufacturing industry.

Currently, predictions of a property such as viscosity rely on (i) empirical models, (ii) 

thermodynamic models, or (iii) molecular dynamics (MD) simulations. Empirical models are 

interpolative in nature, and bring no information about the links between structural, 

thermodynamic and dynamic properties of silicate melts. They can be sufficiently precise to 

accurately predict some properties, such as the glass and melt heat capacities (Stebbins et al., 

1984; Richet and Bottinga, 1985; Richet, 1987; Tangeman and Lange, 1998; Russell and 
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Giordano, 2017). In the case of viscosity, empirical models rely on empirical equations (Bottinga 

and Weill, 1972; Shaw, 1972; Persikov, 1991; Hess and Dingwell, 1996; Hui and Zhang, 2007; 

Giordano et al., 2008; Duan, 2014), such as the Arrhenius or the Vogel-Fulcher-Tammann (VFT) 

laws.  When compared to experimental results, these empirical models can exhibit poor 

predictive performance, markedly worse than their initially communicated uncertainties (e.g., 

Robert et al., 2013; Le Losq and Neuville, 2013; Sehlke and Whittington, 2016; Di Genova et al., 

2017). They provide a practical way of making viscosity predictions, but their usefulness is 

restricted by the chemical composition and temperature range within which the models have 

been calibrated. In addition, these models do not provide any further information about the 

flow process.

Thermodynamic models circumvent the shortcomings of empirical models, particularly 

their interpolative nature and the lack of physical/thermodynamic background that limits 

understanding of the processes underlying melt flow. Initially, thermodynamic models for 

viscosity were limited to mixtures of specific melts comprising only a few oxides (e.g., Richet, 

1984; Hummel and Arndt, 1985; Neuville and Richet, 1991). Analogous attempts were made to 

model other properties, such as the model of Mysen (1995) which calculates the 

configurational heat capacity of silicate melts from their fractions of tetrahedral SiO4 Qn units (Q 

being a tetrahedral unit and n the number of bridging oxygen it carries; 4-n thus gives the 

number of non-bridging oxygens). With recent advances in our knowledge of the links between 

melt structure, thermodynamic properties and viscosity, it has become possible to construct 

more complex thermodynamic models of the properties of silicate melts, either directly from 

the melt chemical composition or based on knowledge of their structure. For example, Sehkle 

and Whittington (2016) proposed a model, based on the Adam-Gibbs theory of relaxation 

processes (Adam and Gibbs, 1965, see section 2.5.2), to predict the viscosity of tholeiitic melts 

with an average error of 0.13 log10 Pa·s, in the 100-1012 Pa·s range. Le Losq and Neuville (2017) 

also proposed a model based on the Adam-Gibbs theory of relaxation processes. Their model 

connects viscosity, heat capacity, configurational entropy, structure and chemical composition 

for melts in the Na2O-K2O-SiO2 system and allows viscosity predictions with an average error 
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lower than 0.2 log10 Pa·s in the 100-1012 Pa·s range. A third example is the model proposed by 

Starodub et al. (2019). It combines an associated solution model of melt structure with the 

Avramov-Milchev equation of viscous flow (Avramov and Milchev, 1988; Avramov, 2011) to 

predict melt viscosity in the 100-1012 Pa·s range in the Na2O-K2O-Al2O3-SiO2 system.

Structure-thermodynamic models, like those discussed above, can be precise and 

provide important information about the links between composition, structure and properties. 

However, such models suffer from an important drawback: a good knowledge of melt structure 

is required. While this can be achieved for silicate melts through, for instance, 29Si Nuclear 

Magnetic Resonance (NMR) spectroscopy (e.g., Maekawa et al., 1991), such information is 

more difficult to obtain for aluminosilicate compositions. In such compositions, Si-Al 

interactions broaden the 29Si NMR signal, and hence retrieving the Qn speciation is not routine: 

it relies on various assumptions required for modeling the 29Si NMR spectra (e.g., see the 

studies of Mysen et al., 2003; Diallo et al., 2019; Sreenivasan et al., 2020). Critical pieces of 

information are obtained through 17O NMR spectroscopy (e.g., Lee and Stebbins, 2009; Lee et 

al., 2016) but do not directly provide information about the Qn speciation used in existing 

structural-thermodynamic models (e.g., Le Losq and Neuville, 2017; Starodub et al., 2019). 

Raman spectroscopy may also be used (McMillan, 1984; Matson and Sharma, 1985; 

Merzbacher and White, 1991; Mysen, 1999), as shown by successful results for alkali silicate 

and aluminosilicate glasses (Mysen, 1990, 2007; Mysen and Frantz, 1992; Neuville and Mysen, 

1996; Malfait et al., 2007; Zakaznova-Herzog et al., 2007; Koroleva et al., 2013; Nesbitt et al., 

2021). However, the variations of the Raman peak cross sections, which are needed to convert 

Raman peak areas into Qn unit fractions, are not known as well as would be desired. 

Furthermore, the peak-fitting protocols can be subject to discussion, as shown by a lack of 

consensus visible when comparing different studies (e.g., compare the methods described in 

the studies of Mysen et al., 1982a; Mysen, 1990; You et al., 2005; Malfait, 2009; Le Losq and 

Neuville, 2013; Le Losq et al., 2014; Bancroft et al., 2018; Nesbitt et al., 2019, 2021). In any 

case, models that only rely on Qn fractions are incomplete because many other structural 

details affect the properties of aluminosilicate melts. These include, but are not limited to, 
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changes in Al coordination with composition, temperature and pressure (Stebbins et al., 2000, 

2008; Toplis et al., 2000; Allwardt et al., 2005a, b; Kiczenski et al., 2005; Neuville et al., 2006, 

2007, 2008a, b; Massiot et al., 2008; Lee et al., 2012; Le Losq et al., 2014; Morin et al., 2014; 

Park and Lee, 2014; Drewitt et al., 2015; Lee et al., 2020), Al-Si ordering between tetrahedral 

units (Lee and Stebbins, 1999; Lee, 2005; Lee et al., 2016; Allu et al., 2018), or excess non-

bridging oxygens (Stebbins and Xu, 1997; Stebbins et al., 1999; Oglesby et al., 2002; Iuga et al., 

2005; Thompson and Stebbins, 2011, 2012, 2013; Xiang et al., 2013). The complexity of the 

atomic structure of melts and glasses is thus very high. Because of this, developing 

thermodynamic models to predict the  properties of multicomponent magmatic and industrial 

melt/glass compositions is a difficult task.

MD simulation (Rapaport, 2004) is another pathway that allows us to infer the structure 

and properties of complex melts. Such models bring important structural, dynamic and 

thermodynamic information by simulating atomic movements at sub-microsecond timescales 

(Guillot and Sator, 2007; Vuilleumier et al., 2009; Bauchy et al., 2013; Wang et al., 2014; Dufils 

et al., 2017, 2020). They provide models that can be used to assess how melt behaves at 

temperatures typically higher than 2000 K, how atoms move and interact, and how this affects 

their physical properties such as viscosity and density. While such predictions are very 

informative about processes at super-liquidus conditions and can be useful for high-

temperature applications (e.g., modeling conditions in glass furnaces or planetary magma 

oceans), they are less helpful at lower temperatures, for example in the 700-1300 °C 

temperature range typical of volcanic eruptions. Furthermore, MD simulation simulates the 

system on very short timescales, typically less than a microsecond for classical MD models, with 

even shorter timescales for ab initio calculations. This is far removed from glass-making 

conditions and from volcanological timescales, which range from minutes to several thousands 

of years and beyond.

In this study, we explore a novel paradigm for structural, thermodynamic and dynamic 

property predictions: physics-guided neural networks (PGNN). These combine physical 

equations with artificial neural networks, bringing advantages in comparison to both traditional 
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physical/thermodynamic models and “pure” machine learning models. PGNNs leverage our 

current knowledge of physical systems by integrating existing physical equations, but add the 

power of machine learning to infer connections between variables not yet understood 

theoretically – for instance, between glass chemical composition and configurational entropy. 

PGNNs have been successful in many applications (Willard et al., 2020), including the analysis of 

seismic waveforms (e.g., Moseley et al., 2020; Smith et al., 2020) and lake temperature 

modeling (Karpatne et al., 2018). This has inspired recent efforts to model the viscosity of ionic 

liquids with neural networks (Paduszyński and Domańska, 2014; Beckner et al., 2018). For 

silicate melts, there have been several attempts to predict melt and glass properties using 

machine learning (see the reviews of Tandia et al., 2019; Liu et al., 2019), stretching back to the 

work of Dreyfus and Dreyfus (2003) on the prediction of liquidus temperature with artificial 

neural networks. Regarding melt viscosity, Hwang et al. (2020) recently proposed an approach 

based on machine learning and the use of “cationic fingerprinting” to predict the temperatures 

of three reference viscosity points (101.5, 106.6 and 1012 Pa·s) for Na2O-SiO2-Al2O3-CaO melts 

with an error of ± 33 °C. Cassar (2021) also proposed the ViscNet model, a PGNN model that 

combines either the VFT or the MYEGA viscosity equations (see section 2.5.2) with a neural 

network to perform viscosity predictions of silicate and aluminosilicate melts. Such results are 

very encouraging and showcase the ability of PGNN to provide pragmatic, practical models for 

property predictions.

Here, we go a step further by presenting a PGNN model (“i-Melt”) that combines several 

physical equations with a deep learning neural network, and predicts many different melt and 

glass properties of interest for geology and industry. This includes melt viscosity, glass transition 

temperature, fragility and configurational entropy – all important properties defining the 

mobility of the melt – as well as the density and optical refractive index of glasses, which are of 

interest for industrial applications. We also predict Raman spectra, which are readily-observed 

and provide information about the atomic structure of the glass. Other properties, such as 

thermal expansion coefficients, can be of interest but were left out of the modeling at this 

stage. i-Melt is thus a PGNN “multitask” model, which has the ability to predict different 
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features/properties of the same object: a silicate melt/glass. i-Melt was trained on melt and 

glass compositions in the K2O-Na2O-Al2O3-SiO2 system, for which a fairly complete, albeit 

sparse, experimental dataset is available. In this system, i-Melt allows systematic exploration of 

the links between melt/glass composition, structure and properties, as we describe below. 

Building on this, we are then able to comment on the source of the compositional control on 

eruptive dynamics observed for rhyolite melts, as well as on the possible importance of the 

K/(K+Na) ratio in alkaline magmatic series.

2. Methods

2.1 Experimental Design

The development of the deep learning model requires the collection and compilation of 

viscosity, density, refractive index data, and Raman spectra for glasses and melts in the K2O-

Na2O-Al2O3-SiO2 quaternary system (Fig. 1). The viscosity of supercooled melts for peralkaline 

compositions in this system is not well understood, and we conducted additional experiments 

to complement the existing dataset. We further compiled existing data as specified below, prior 

to developing the i-Melt framework in the Python programming language, by using the PyTorch 

library. All code and data necessary to reproduce this study are available from Github at 

https://github.com/charlesll/i-melt ; future improvements will be also distributed via this 

repository.

2.2 Datasets

Existing Raman spectra and observations of optical refractive index, density and 

viscosity of alkali aluminosilicate glasses were selected by hand via a review of the existing 

literature. Validation of the accuracy of viscosity data across different studies is critical and was 

checked on melt compositions including Na2Si3O7, NaAlSi3O8 and NaAlSi2O6. We plotted all the 

literature data for such compositions, and observed the mean trend of these data. Most data 

fall within 0.1 log10 Pa·s, forming a clear general trend. Published data with deviations larger 

than 0.1 log10 Pa·s compared to this general trend were discarded. Density and refractive index 

https://github.com/charlesll/i-melt
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come from various publications, in particular from publications reviewed in Mazurin et al. 

(1987). Raman spectra were published data from the IPGP and Carnegie Institution for Science 

laboratories (see below for details). All the data and their sources are provided in the database 

available in the software repository. We thus have four different streams of data:

- Dviscosity, the dataset of melt viscosity measurements, composed of Xviscosity chemical 

composition entries (mole fractions) as well as their associated temperatures (Kelvin) and 

yviscosity observations ( log10 Pa·s);

- Ddensity, the dataset of glass density measurements, composed of Xdensity chemical 

composition entries (mole fractions) and ydensity observations (g cm-3);

- DRaman, the dataset of glass Raman spectra, composed of XRaman chemical composition 

entries (mole fractions) and yRaman spectra observations (normalised Raman intensities);

- Doptical, the glass dataset of optical refractive index, composed of Xoptical chemical 

composition entries (mole fractions) as well as their associated wavelength (µm) and yrefractive 

index observations.

Dviscosity, Ddensity and Doptical cover an important part of the glass-forming domain of alkali 

aluminosilicates (Fig. 1). These data were, thus, used to train the artificial neural network with a 

“performance oriented” mindset, i.e. we want the model predictions to be as accurate as 

possible. DRaman covers a more limited set of compositions (Fig. 1). It was used as a way of 

improving multitask learning: achieving inductive transfer between related tasks using a shared 

representation of the problem (Caruana, 1997). Multitask learning is known to generally 

improve the performance of learning. Here, Raman spectra encode structural information that 

could assist the network in learning physical properties, embedding a shared representation of 

the composition-structure-property links in melts and glasses.

2.3 Sample synthesis and viscosity-density measurements

To extend the viscosity dataset for peralkaline aluminosilicate melts, additional 

compositions were synthesized at IPGP in Paris from reagent-grade K2CO3, Na2CO3, Al2O3 and 

SiO2 dried oxide powders, following the protocol described in Le Losq and Neuville (2013). 
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Viscosity and density measurements follow the protocol used in the Geomaterials laboratory at 

IPGP  (Neuville, 2006; Le Losq and Neuville, 2013; Le Losq et al., 2014). Chemical compositions 

(Table 1) have been measured using a Cameca SX50 electron microprobe, with a 30 nA current, 

U = 30 kV, and 5 seconds of counting. Beam-induced alkali loss was minimized by working with 

a defocused beam that was moved continuously during the analysis. The mean and standard 

deviation values reported in Table 1 are calculated from 10-20 individual measurements on 

each sample. The corresponding viscosity measurements are provided in Table 2, and are 

affected by an error less than or equal to 0.03 log10 Pa·s. All measured viscosities were 

Newtonian – no dependence on the strain rate was observed.

2.4 Raman spectroscopy

Raman spectra of silicate and aluminosilicate glasses acquired at IPGP (Paris, France) 

were recorded using a T64000 Jobin-Yvon® Raman spectrometer equipped with a confocal 

system, a 1024x1024 charge-coupled detector (CCD) cooled by liquid nitrogen and an Olympus® 

microscope. The optimal spatial resolution allowed by the confocal system is 1-2 μm2 with a 

100× Olympus® objective, and the spectral resolution is 0.7 cm-1. A Coherent® laser 70-C5 Ar+, 

having a wavelength of 488.1 or 514.532 nm, has been used as the excitation line. Unpolarized 

Raman spectra that were excited with a laser power of 100-150 mW on the sample were 

acquired between 20 and 1500 cm-1 on pieces of glass from the starting materials. 

Additional Raman spectra acquired at the Geophysical Laboratory on glasses along the 

Na2Si4O9-Na2(NaAl)4O9 and K2Si4O9-K2(KAl)4O9 joins, previously published in Mysen (1996, 1999), 

were added to the database. Those spectra were acquired with a Dilor XY confocal microRaman 

spectrometer equipped with a cryogenic Thompson Model 4000 CCD. The 488 nm line of a 

SpectraPhysics model 2025 Ar+ laser operating at several hundred mW at the sample was used 

for sample excitation. 

Preprocessing of the spectra was kept to minimum: (i) the spectra were corrected for 

temperature and excitation line effects (see details and references in Le Losq and Neuville, 

2013; Le Losq et al., 2014), (ii) the spectra were normalised to their maximum intensity Imax 
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such that the intensity in each spectrum varies between 0 and 1 (Inormalised = [I-Imin]/[Imax-Imin], 

with Imin the minimum intensity of a spectrum). The 400-1250 cm-1 portion of Raman spectra, 

resampled with a step of 1 cm-1, was retained as different spectra had different starting and 

ending Raman shift values. After pre-processing, this 400-1250 cm-1 portions of the spectra 

were saved in a HDF5 file for their future use.

2.5 Deep learning model

2.5.1 Overview

The i-Melt framework (Fig. 2) combines a deep artificial neural network with various 

dynamic and thermodynamic equations. This strategy allows the development of an intelligent 

model that links different observables from the same object (melt/glass). The artificial neural 

network is a feed forward network with multiple interconnected hidden layers (Murphy, 2012; 

Goodfellow et al., 2016). It either predicts directly-observable glass properties including 

density, refractive index and Raman spectra, or outputs the latent variables (such as 

configurational entropy, Sconf, a property that reflects the melt structure) required to predict 

properties such as melt viscosity through five theoretical and empirical equations commonly 

used for reproducing experimentally-observed variations of silicate melt viscosity with 

temperature: Adam-Gibbs, MYEGA, Avramov-Milchev, Tamman-Vogel-Fulcher and Free Volume 

Theory. In the next section, we will present the possibility of performing such trans-theoretical 

predictions, i.e. the ability to predict a given property using different theoretical/empirical 

frameworks but a single, common artificial neural network. The network predicts, given melt 

composition, the different parameters of the different theoretical/empirical equations, which, 

in turn, provide different values of the desired property. This allows one to predict melt 

viscosity using, for instance, the Adam-Gibbs or Free Volume equations depending on 

preference, and to compare final predictions as well as observe the connection and correlation 

between the different variables of the equations.

2.5.2 Trans-theoretical predictions
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Various theories have been proposed to explain and reproduce the variations of the 

viscosity of liquids with parameters such as temperature, pressure or composition. For instance, 

the Adam-Gibbs theory (Adam and Gibbs, 1965) has been particularly successful in reproducing 

relaxation and viscosity data of silicate melts (Richet, 1984; Scherer, 1984; Neuville and Richet, 

1991; Bottinga et al., 1995; Bottinga and Richet, 1996). It assumes that liquid movements occur 

through cooperative molecular re-arrangements; viscosity (η) can be expressed as a function of 

temperature (T) and composition (x) via

 , (1)𝑙𝑜𝑔10𝜂(𝑇,𝑥) = 𝐴𝑒(𝑥) +
𝐵𝑒(𝑥)

𝑇(𝑆𝑐𝑜𝑛𝑓(𝑇𝑔,𝑥) + ∫𝑇
𝑇𝑔

𝐶𝑐𝑜𝑛𝑓
𝑝 (𝑥) 𝑇𝑑𝑇)

with Ae representing a high-temperature limit, Be a term proportional to the energy barriers 

opposed to molecular re-arrangements, and Sconf and Cp
conf the melt configurational entropy 

and heat capacity, respectively. Cp
conf(Tg) is calculated from the difference Cp

liquid(Tg)  – Cp
glass(Tg); 

here, Cp
liquid(Tg) was calculated from the model of Richet and Bottinga (1985) and Cp

glass(Tg) is 

calculated from the Dulong-Petit limit of 3R, with R the perfect gas constant. Tg is the glass 

transition temperature. Here, we adopt the empirical definition of Tg as equal to the 

temperature for which η = 1012 Pa·s, and the associated melt relaxation time is of ~100 s. The Tg 

calculated from this definition agrees within 20-30 K with the Tg determined from calorimetric 

measurements (e.g., Russell and Giordano, 2017), which themselves depend on the 

cooling/heating rates during calorimetric measurements. The adopted Tg definition is thus 

coherent for viscosity modeling, as Tg derived from the viscosity data refers to the relaxed melt 

and its equilibrium structure. 

Alternatively, one might adopt the Free Volume theory (Cohen and Grest, 1979, 1984), 

which states that melts present liquid-like and solid-like molecular cells, their mobility being 

ensured by atomic diffusivity within/between liquid-like cells. This takes the form

 , (2)𝑙𝑜𝑔10𝜂(𝑇,𝑥) = 𝐴𝐹𝑉(𝑥) +2𝐵𝐹𝑉
(𝑥) (𝑇 ― 𝑇𝐹𝑉(𝑥) + ((𝑇 ― 𝑇𝐹𝑉(𝑥))2 + 𝐶𝐹𝑉(𝑥)𝑇))

with  again representing the high-temperature limit,   a constant that depends on 𝐴𝐹𝑉(𝑥) 𝐵𝐹𝑉(𝑥)

the molecular volume,   a constant that has a dimension of temperature and that should 𝐶𝐹𝑉(𝑥)
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be positive, and  a constant identified as the temperature at which continuity of liquid-𝑇𝐹𝑉(𝑥)

like cells is reached.

Beyond the Free Volume and Adam-Gibbs models, many other theories have been 

proposed to describe the viscous flow of liquids. Among those, some are empirical like the 

Vogel-Fulcher-Tamman (VFT) equation:

 , (3)𝑙𝑜𝑔10𝜂(𝑇,𝑥) = 𝐴𝑉𝐹𝑇(𝑥) + 𝐵𝑉𝐹𝑇(𝑥) (𝑇 ― 𝑇𝑉𝐹𝑇(𝑥))

with AVFT, BVFT and TVFT adjustable parameters. Others are based on different physical theories 

like the Avramov and Milchev (1988) (AM) model, or derive from the Adam-Gibbs theory like 

the MYEGA model (Mauro et al., 2009). Both propose equations relating viscosity, temperature 

as well as Tg(x) and m(x), the glass transition temperature and the fragility (equal to the 

gradient of the log10 viscosity versus inverse temperature curve at Tg) of a melt with 

composition x. The AM model is expressed as (Avramov, 2011):

 , (4)𝑙𝑜𝑔10𝜂(𝑇,𝑥) = 𝐴𝐴𝑀(𝑥) + (12 ― 𝐴𝐴𝑀(𝑥))(𝑇𝑔(𝑥) 𝑇)
𝑚(𝑥) (12 ― 𝐴𝐴𝑀(𝑥))

with AAM a pre-exponential terms proportional to . Similarly, the MYEGA equation 𝑙𝑜𝑔𝜂(𝑇⟶∞)

takes the form:

 , (5)𝑙𝑜𝑔10𝜂(𝑇,𝑥) = 𝐴𝑒(𝑥) + (12 ― 𝐴𝑒(𝑥))(𝑇𝑔(𝑥) 𝑇)𝑒
(𝑚(𝑥) (12 ― 𝐴𝑒(𝑥)) ― 1)(𝑇𝑔(𝑥)

𝑇 ― 1)

with Ae  a pre-exponential term proportional to  that was taken as equal to that 𝑙𝑜𝑔10𝜂(𝑇⟶∞)

in the Adam-Gibbs theory (eq. 1) because the MYEGA equation is a daughter product of the 

Adam-Gibbs theory. In practice, all the above equations model the viscosity dependence on 

temperature of silicate melts very well.

While the equations presented above are popular for silicate melts, no over-riding 

consensus exists towards any one model appropriate for all liquids. In fact, some of those 

models rely on very different theoretical backgrounds. The i-Melt approach circumvents the 

problem of choosing one particular theory by proposing a trans-theoretical approach. The 

artificial neural network is trained to predict melt viscosity using all five theoretical/empirical 
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frameworks (eqs. 1-5). It provides optimal common values for parameters that appear in 

multiple theories, such as the glass transition temperature Tg. As a result, it allows comparison 

of viscosity predictions between the different theories, and observation of how parameters 

from the different theories correlate with each other, potentially providing insight into physical 

inter-relationships.

2.5.3 Data preparation: Train-Validation-Testing split and standardisation

If a model performs well when tested against the training dataset, but fails at making 

reliable predictions on new, unseen datasets, it is said to be ‘overfitting’. This is a common 

problem affecting machine learning models. Here, we deploy several strategies to mitigate it. 

First, we monitor the phenomenon: the available datasets were split into three different, 

randomly chosen training, validation and testing subsets using the chemical_splitting rampy 

package function (Le Losq et al., 2019a) that relies on the scikit-learn (Pedregosa et al., 2011) 

train_test_split() algorithm. The data were randomly separated by composition to avoid the 

pitfall of having the same glass/melt composition in the different training, validation and 

testing subsets, a phenomenon known as ‘data leakage’ (Kaufman et al., 2012). As we wanted a 

significant amount of data in the testing subset for viscosity (because this is the most difficult 

property to predict here), Dviscosity was separated with 20% of the compositions in the testing 

subset, 15% in the validation subset, and 65% in the training subset. Doptical and Ddensity were 

separated with 70% of the compositions in training, 15% in validation and 15% in testing. DRaman 

was divided in only two train and validation subsets due to its small size, with a 85-15 ratio. This 

is not problematic, because we do not aim at precise predictions of Raman spectra but rather 

use this dataset as a way to improve the general predictive capacity of the trained neural 

network through multitask learning.

During the training process, the training subset was used for training the model while 

the validation subset was used for monitoring overfit and to trigger early stopping. The latter 

method consists in stopping the training process when the Root-Mean-Square-Error (RMSE), 

measured between predictions and observations, on the validation data subset stops 
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decreasing and starts diverging from that measured using the training data subset. This allows 

stopping the training process before the over-fitting phenomenon appears (Goodfellow et al., 

2016). The final predictive abilities of the trained neural networks were then evaluated using 

the entirely unseen testing data subset.

After train-validation-test splitting, an important step in any machine learning data 

preprocessing is standardization of the data. In practice, appropriate data scaling is often 

essential to obtaining good convergence within algorithms (Goodfellow et al., 2016). The goal 

of re-scaling is to promote feature variations near unity and to ensure that all features have 

comparable numerical ranges: failure to do so tends to lead to instabilities in the gradient back-

propagation process that is central to training neural networks. In the present study, we have 

implemented a custom approach. All chemical compositions inputs are in mole fractions, which 

(by definition) take values between 0 and 1. Therefore, these inputs do not require rescaling. 

The intensity of the Raman spectra were normalised to lie in the range 0 and 1: taking the 

Raman spectrum of a given composition, its intensities I were normalised according to the 

equation (I-min(I))/(max(I)-min(I)). Other outputs such as viscosity, density and refractive index 

were not scaled, as scaling the outputs was not found to affect network convergence. However, 

with unscaled outputs, it is essential to initialise the bias of the output layer of the neural 

network to match the expected numerical range of the predictions to be made, as developed 

for (e.g.) Mixture Density Networks (Bishop, 2006). After pre-processing, the different scaled 

training, validation and testing data subsets were saved in Hierarchical Data Format HDF5 files 

for their future use.

2.5.4 i-Melt model technical implementation

i-Melt is implemented in the Python programming language, using the Pytorch machine 

learning library (Paszke et al., 2019). It takes four inputs: the mole fractions of the SiO2, Al2O3, 

Na2O and K2O components. These are fed into to a neural network composed of k hidden 

layers, each one having a given number of activation units (a.k.a neurons). Here, we chose to 

keep the same number of activation units in the different hidden layers. Alternative network 
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structures (e.g. a “triangular” architecture with progressively fewer activation units in the 

deeper hidden layers) were explored, but did not markedly alter results. Following testing of 

various alternatives, we adopted the now-popular rectifier linear unit, ReLU (Glorot et al., 

2011), as the activation function of activation units, so that an activation unit receiving input, x, 

returns output y = max(0,x). The outputs of the hidden layers were finally fed into two output 

linear layers. The first output layer returns vectors that are Raman spectra, calculated from the 

linear sum of the last neural network hidden layer. The second output linear layer returns 17 

different values:

- the parameters Ae, AAM, AFV and AVFT (eqs. 1 to 5), as well as the coefficients B1 to B3 

and C1 to C3 of the Sellmeier equation (see eq. 6 below) for the calculation of the glass 

refractive index n, are directly given by the linear outputs; and

- the natural logarithms of Sconf(Tg), CFV, Tg, TFV, TVFT, the melt fragility m, and the glass 

density d.

The use of the natural logarithm in the latter case was inspired by a similar strategy proposed 

by Bishop (2006) for Mixture Density Networks. It ensures that quantities are assigned positive 

values in accordance with their physical meaning. The exponential function is then used on the 

neural network outputs to provide the final predictions, such that no negative values are 

possible. We also found the use of this strategy to aid rapid convergence during training. 

Indeed, we tested affecting the final output layer by relu() or sigmoid() activation functions, 

which also output only positive values, but this resulted in a much slower training; convergence 

was actually not achieved in most cases. Be, BFV and BVFT were calculated from eqs. 1 and 5 and 

the knowledge of the other parameters; for instance,  Be = (12 – Ae)/(Tg Sconf(Tg)), with  Ae, Tg 

and Sconf(Tg) values given by the neural network. The coefficients B1 to B3 and C1 to C3 are used 

to predict the refractive index at given wavelength, , via the Sellmeier equation:𝑛(𝜆)

 . (6)𝑛(𝜆) = √(1 +
𝐵1 × 𝜆2

𝜆2 ― 𝐶1
+

𝐵2 × 𝜆2

𝜆2 ― 𝐶2
+

𝐵3 × 𝜆2

𝜆2 ― 𝐶3
)

The artificial neural network allows us, therefore, to input chemical compositions and 

obtain predictions for:
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- melt viscosity, within five distinct theoretical or empirical frameworks, 

- glass transition temperature,

- latent variables like configurational entropy and fragility,

- glass density,

- glass refractive index as a function of wavelength, and

- glass Raman spectra.

These predictions depend on a large number of tuneable parameters integral to the neural 

network. During network training, these parameters are optimized, seeking values that enable 

good average predictive performance when applied to examples in our database of observed 

glass properties.

2.5.5 Training i-Melt

During training, we monitored the root-mean square errors (RMSE) between 

measurements and predictions for viscosity from eqs. 1 to 5 as well as density, optical refractive 

index and Raman spectra, on the training and validation data subsets. A loss function was also 

added for known Sconf(Tg) values from the dataset Dviscosity. This was necessary because Sconf(Tg) 

is a parameter that is difficult to evaluate because of its strong correlation with Be. This 

correlation prevents equation 1 from having a non-ambiguous solution. In practice, the neural 

network can predict a nearly constant value for the first and large variations for the second, and 

still obtain good predictive results for viscosity. Addition of a loss function for known Sconf(Tg) 

solved this problem. The total loss Ltotal was computed from the sum of the different loss 

functions Li, , affected by scaling factors wi that were adjusted manually such that 𝐿𝑡𝑜𝑡𝑎𝑙 = ∑𝑤𝑖𝐿𝑖

each loss was around unity after training. Back-propagation was performed using the automatic 

differentiation methods implemented in Pytorch.

Batch training was performed using the Adam optimizer with a learning rate of 0.0006 

(manually tuned), and monitoring the global loss on the training and validation data subsets. 

Early stopping, which consists of stopping the training process when the first signs of over-

fitting are detected  (Goodfellow et al., 2016), was used to avoid overfitting: when the global 
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loss function on the validation data subset ceased to decrease for more than a given number of 

epochs (manually tuned), training was halted and the network exhibiting the best validation 

loss was saved. Dropout (Srivastava et al., 2014), a method that entails randomly turning off a 

given fraction of activation units at each training iteration, was also tested. This method is 

known to promote generalization and reduce overfitting.

2.5.6 Optimization of the artificial neural network architecture

Before presenting any results regarding the performance of the model, we first 

document the optimal architecture and the way we searched for it. This optimal architecture is 

important as it determines its performance to fit the existing data, its sensitivity to overfitting, 

and its generalization ability (i.e. its ability to provide precise and accurate predictions for new, 

unseen compositions). Several methods allow searching for the optimal neural network 

architecture, like random search (Bergstra and Bengio, 2012) or Bayesian optimization (Snoek 

et al., 2012). In this study, the architecture of the hidden layers was optimized via a random 

search process (Bergstra and Bengio, 2012). With sufficient iterations, such random search 

allows sampling the model space with a good precision.

Two numerical experiments were performed. The first explored how the neural network 

architecture affected its performance. For this experiment, we randomly varied the number of 

hidden layers from 1 to 6, that of hidden activation units from 10 to 500 and the dropout 

parameter p from 0 to 0.5. 3000 neural networks with different architectures were generated 

using the random number generator from the python library numpy. The results of this test 

show that a moderately deep neural network with 3 to 5 layers and 200-300 units per layer 

provide the best results, with limited overfitting (Supplementary Figure 1). Those results 

indicate that moderately deep neural network generalizes better than shallow ones on this 

problem with small datasets. The dropout method helps slightly in preventing overfitting, but is 

not a critical feature in the present case (Supplementary Figure 1). Following this test, we 

selected a reference architecture with 4 layers, 300 neurons per layer, and a dropout of 0.01.



 19

The second test investigated the effect of the number of training compositions in the 

training dataset on the overall performance of the model, using the reference architecture 

selected following the random training phase (see above). Deep neural networks are generally 

known to be “data-eager”, requiring large datasets for efficient training. To identify the point at 

which we can start trusting the results of i-MELT, we generated new training datasets for 

Dviscosity with different numbers of compositions, from ~20 up to more than 120 (Supplementary 

Figure 1). In practice, this represents many more data points, as there are multiple viscosity 

measurements for each composition (on average, ~10 observations per composition). For the 

system considered here, we find satisfactory performance once the dataset reaches around 70 

distinct compositions. With more than 70 compositions in the training dataset, RMSE values 

between model predictions and measurements become lower than 0.6 log10 Pa·s. Furthermore, 

the training and validation subsets exhibit similar RMSE values, indicating that any overfitting 

problem is limited (Supplementary Figure 1). With the chosen data splitting (see above), we 

have 113 different compositions in training Dviscosity (over a total of 173), and 160 (over a total of 

223) and 139 individual compositions (total 205) in the training Doptical and Ddensity, respectively. 

The datasets are thus large enough for training efficiently the networks. The only limit is for 

Raman spectra, with training DRaman having only 48 compositions (total 58). As already explicitly 

presented, we thus do not expect high performance for Raman spectra predictions. 

To make the final predictions and further limit the overfitting problems, we trained 100 

candidate neural networks with the reference architecture, and selected the 10 best ones. All 

reported predictions by i-Melt are calculated from the average of those from the 10 best neural 

networks, following the bagging method (Breiman, 1996) that promotes generalization (good 

predictions on new samples) of machine learning algorithms. This further allows us to provide 

error bars and error envelopes, which can be calculated from the standard deviation of the 

predictions of the 10 neural networks. The use of the bagging method, combined with the 

developed training protocol, allowed i-Melt to provide good generalization abilities. 

Furthermore, multi-task learning is performed here, as the neural network is trained to predict 

different features (properties like density or Tg, observables like Raman spectra...) from the 
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same objects. This helped further limiting overfitting because artificial neural networks learning 

to predict multiple related features/observables tend to show better prediction abilities 

compared to those trained to predict only a given task/parameter/feature (Caruana, 1997). We 

observed this by performing a few tests, training a few neural networks to only predict 

viscosity. Those resulted in RMSE of ~ 0.5 – 0.6 log10 Pa·s, higher than those of neural networks 

trained to predict multiple properties (equal to or lower than 0.4 log10 Pa·s, see below).

3. Results

3.1 Melt and glass property predictions

Using the unseen samples from the testing data subsets, it is possible to test whether i-

Melt can provide good predictions despite limited experimental datasets. Trans-theoretical 

predictions of η (Fig. 3, see also Supplementary Figure 2) are possible with good precision. The 

RMSE values are equal to 0.4 log10 Pa·s on the testing data subset (Table 3). For comparison, the 

RMSE of the best empirical magma viscosity models typically are higher than, or equal to 0.6 

log10 Pa·s (e.g. Giordano et al., 2008). Eqs. 1 to 5 all yield similar values (Supplementary Figure 

2, Table 3). In detail, predictions in the supercooled temperature domain are affected by larger 

errors than predictions in the sub-liquidus to super-liquidus domain: testing RMSE values (all 

equations considered) are in the range 0.5-0.7 log10 Pa·s when considering only data in the 107-

1015 Pa·s range, whereas they are in the range 0.2-0.3 log10 Pa·s for data below 107  Pa·s.

The melt/glass properties are also well predicted by i-Melt. Known viscous Tg and 

Sconf(Tg) are predicted within 19 K and 0.8 J mol-1 K-1, respectively (Table 3 , Supplementary 

Figure 3). The glass density and refractive index are predicted to within 0.02 g cm-3 and 0.006, 

respectively (Table 3). For the two latter properties, a few outliers are visible and correspond to 

extreme compositions along the SiO2-Al2O3 join (Figs. 1c,d, Supplementary Figure 3) for which 

only a few data points are available. This is therefore unsurprising, particularly considering that 

there are large variations in glass and melt properties along this join (e.g., Okuno et al., 2005; 

Ando et al., 2018).
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3.3 Structural information through Raman spectra predictions

In addition to physical and thermodynamic properties, i-Melt has the ability to predict 

structure-dependent features such as Raman spectra of glass. Considering the very small 

experimental Raman dataset (Fig. 1b), global variations of Raman signals have been well-

captured. The 400-1250 cm-1 portion of the glass Raman spectra can be predicted within a 

relative error of ~25 % (average relative RMSE between observed and predicted spectra from 

the validation data subset). For instance, Figure 4a shows examples of the prediction of the 

Raman spectra of glasses along the Na2O-SiO2 binary join. 

Structural information can be extracted from i-Melt Raman spectra predictions. Figure 

4b shows, for instance, the large decrease in the signals assigned to bending/stretching of Qn-Qn 

intertetrahedral vibrations in the glass network (Bell et al., 1968; Sen and Thorpe, 1977; 

Furukawa et al., 1981; McMillan, 1984) with addition of Na2O in SiO2. These variations are 

accompanied by increasing intensity near 1100 cm-1, a signal that results from Si-O stretching in 

Q3 units (Brawer and White, 1975, 1977; Furukawa et al., 1981; Mysen et al., 1982a; McMillan, 

1984). When the Na2O fraction is above 0.3, we further see the increase of the intensity of a 

signal near 950 cm-1 that can be assigned to Si-O stretching in Q2 units (Brawer and White, 

1975, 1977; Furukawa et al., 1981; Mysen et al., 1982a; McMillan, 1984). 

The analysis of predicted signals, such as those showed in Figure 4b, through peak fitting 

or decomposition methods (e.g., see Mysen et al., 1982a; Herzog and Zakaznova-Herzog, 2011) 

can allow extracting further structural information about the glass. At the moment, for the sake 

of simplicity, we focus on extracting a simple parameter: RRaman, the ratio of intra- and inter-

tetrahedral aluminosilicate vibrations. RRaman is the ratio between ALW, the integrated intensity 

in the 0-670 cm-1 range, and AHW, the integrated intensity in the 800-1300 cm-1 range:

 . (7)𝑅𝑅𝑎𝑚𝑎𝑛 =
𝐴𝐿𝑊

𝐴𝐻𝑊
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ALW integrates the signals assigned to bending/stretching of Qn-Qn intertetrahedral vibrations in 

the glass network (Bell et al., 1968; Sen and Thorpe, 1977; Furukawa et al., 1981; McMillan, 

1984), and AHW those assigned to stretching of Al-O and Si-O bonds in Qn units (Brawer and 

White, 1975, 1977; Virgo et al., 1980; Furukawa et al., 1981; Mysen et al., 1982; McMillan, 

1984). The integration boundaries were selected by observing all the spectra plotted together. 

They correspond to common Raman shifts that delimit the frequencies of the inter-tetrahedral 

Qn- Qn and intra-tetrahedral Qn vibrational regions. While some small changes could be made in 

some cases, our selection of common boundaries for all glass Raman spectra robustly captures 

the general trend.

RRaman is a simple but interesting parameter, because it appears to correlate with 

structural parameters like NBO/T (number of non-bridging oxygens per tetrahedral unit, see 

Mysen et al., 1982b), and, as such, it was used to propose viscosity models based on the Raman 

spectra of glasses (Giordano and Russell, 2018). i-Melt can predict RRaman within an error of ± 

0.5, such that we can use the model to obtain first-order information about RRaman variations 

and glass structure. For instance, along the Na2O-SiO2 binary, we observe that the addition of 

network modifier Na2O to silica is accompanied by a strong decrease in RRaman that originates 

from the increase in the glass NBO/T (Fig. 5a). This observation thus corroborates the findings 

of Giordano and Russell (2018). RRaman thus can serve as a measure of the glass SiO2-AlO2 

network connectivity (i.e. formation of T-O-T bonds, with T=Si,Al): the higher Rraman is, the 

higher the aluminosilicate network connectivity, the lower the NBO/T.  Because of such link, 

RRaman may be linked to variations in melt properties, as suggested by the study of Giordano and 

Russell (2018). However, looking at sodium tectosilicate glasses with Al/Na = 1 (Fig. 5b), RRaman 

is also influenced by other effects. Indeed, it decreases with decreasing the silica content in 

fully polymerized tectosilicate melts. This reflects the evolution of Raman spectra as Al 

substitutes Si along the SiO2-NaAlO4 join, which results from structural variations such as 

decreasing intertetrahedral bond angles (Seifert et al., 1982; Neuville and Mysen, 1996).

There is a substantial data gap for Rraman  between ~2 and ~4 (the value corresponding to 

that of silica glass) because there are very few Raman spectra in the dataset at SiO2 
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concentrations above ~ 90 mol%, and Rraman varies strongly with silica content at this level. This 

data gap originates from the difficulty to obtaining samples above ~ 90 mol% SiO2, and only one 

spectrum (that of silica) constrains the model at very high RRaman values.. At such high silica 

concentrations, unmixing can happen during quench for Na2O-SiO2 compositions  (e.g., Jarry 

and Richet, 2001). In addition, high liquidus temperatures make the synthesis of glasses difficult 

for Al-bearing compositions (Schairer and Bowen, 1955, 1956). Nevertheless, information from 

new experiments in silica-rich melts could be important to bring information to the model 

about melt/glass structural behavior between an extreme composition like SiO2 and 

multicomponent melts/glasses.

3.4 Model internal consistency

The ability to predict the melt fragility, m, permits further testing of the internal 

consistency of i-Melt. Experimental data indicate that a direct correlation between m and the 

ratio of the configurational heat capacity at Tg over the configurational entropy at the glass 

transition, Cp
conf(Tg)/Sconf(Tg), exists (Webb, 2008; Russell and Giordano, 2017). This is predicted 

by the Adam and Gibbs theory because (Toplis et al., 1997a):

 . (8)𝑚 =
𝐵𝑒

𝑆𝑐𝑜𝑛𝑓(𝑇𝑔)𝑇𝑔
[1 +

𝐶𝑐𝑜𝑛𝑓
𝑝 (𝑇𝑔)

𝑆𝑐𝑜𝑛𝑓(𝑇𝑔)]
We find that i-Melt also predicts this correlation (Fig. 6). The model predictions fall between the 

trends found by the experimental studies of Russell and Giordano (2017) and Webb (2008). The 

model is, thus, internally consistent. Some scatter is visible in figure 6. It most probably arises 

from the propagation of the uncertainties affecting the different predicted values (i.e., m and 

Sconf(Tg)) as well as the melt and glass Cp calculations. The combination and propagation of all 

those sources of uncertainties probably explains the greater scatter observed in Figure 6 

compared to experimental studies (Webb, 2008; Russell and Giordano, 2017). Finally, some 

outliers are also visible, and correspond to compositions mostly on the SiO2-Al2O3 join. Along 

this binary, no supercooled viscosity data are available to constrain the melt fragility, and 
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melt/glass Cp predictions probably are affected by important errors. The combination of those 

two problems probably explains the occurrence of the observed outliers.

3.5 Systematic predictions in the Na2O-Al2O3-SiO2 and K2O-Al2O3-SiO2 systems

The Na2O-K2O-Al2O3-SiO2 system is of paramount importance for alkali magmatic melts, 

particularly rhyolites and granites. With i-Melt, we can go a step further and observe how 

several properties vary with composition in this system. For the sake of clarity, we focus here 

on showing variations in the ternary Na2O-Al2O3-SiO2 and K2O-Al2O3-SiO2 systems. To calculate 

properties, we first generated 10,000 random compositions in the ternary Na2O-Al2O3-SiO2 and 

K2O-Al2O3-SiO2 systems, from 50 mol% SiO2 to 100 mol% SiO2, and asked i-Melt to predict 

several glass and melt properties.

3.5.1 Glass properties

i-Melt allows systematic exploration of the variations of the viscous glass transition 

temperature with melt composition (Fig. 7a,b). In the Na2O-Al2O3-SiO2 and K2O-Al2O3-SiO2 

systems, the model predicts the well known decrease of Tg with addition of alkali metals, and 

increase with addition of SiO2, and, to a lesser extent, Al2O3 (Fig. 7a,b). In the potassic 

aluminosilicate system, there is a local Tg maximum near the KAlSi2O6 composition on the SiO2-

KAl2O4 binary, at ~ 66 mol% SiO2 (Fig. 7b). This maximum correlates with a maximum in liquidus 

temperatures (Tliquidus). That of leucite KAlSi2O6 is of 1693 °C (Schairer and Bowen, 1955). It 

corresponds to a local maximum along the SiO2-KAl2O4 binary that correlates with the Tg 

maximum observed in figure 7b. No such maximum in Tg is observed on the sodic SiO2-NaAl2O4 

binary, in agreement with the absence of a Tliquidus maximum along this binary (Schairer and 

Bowen, 1956). This agrees with the general correlation between Tg and Tliquidus (e.g., see Sakka 

and MacKenzie, 1971 and references therein), leading us to suggest that a model such as i-Melt 

could also predict Tliquidus.

 Compared to Tg, glass density or optical refractive index display simpler variations with 

glass composition (Fig. 7c,d,e,f). As it is well known, glass density mostly depends on the 
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concentrations of Na2O and Al2O3 added to SiO2. i-Melt reproduces this dependence well. The 

glass optical refractive index variations show a different pattern, the addition of Al2O3 having a 

greater effect than that of Na2O at comparable molar contents. The optical refractive index 

actually does not correlate strongly with any of the thermodynamic/dynamic variables. This is 

expected because the optical refractive index is mostly controlled by the electronic properties 

of the atoms present in the glass. Interestingly, glass density correlates with fragility (Spearman 

correlation coefficient rs = 0.87). Similar variations are thus visible when comparing melt 

fragility and glass density in the ternary sodium and potassium aluminosilicate diagrams (Figs. 

7, 8).

3.5.2 Melt fragility

Two of the selected viscosity equations (eqs. 4, 5) share melt fragility as a common 

parameter in their expressions. Melt fragility is equal to the slope of the log10 of viscosity versus 

the inverse of temperature at Tg, and scales with the ratio between Cp
conf and Sconf at Tg (eq. 8). 

In the investigated system, melt fragility varies smoothly with the SiO2 and Al2O3 concentrations 

(Fig. 8a,b). Increasing melt SiO2 content leads to large decreases in melt fragility, an observation 

that agrees with previous ones in alkali (e.g., Toplis et al., 1997a) and even alkaline-earth (e.g., 

Bechgaard et al., 2017) aluminosilicate compositions. Changing the K/(K+Na) ratio does not lead 

to large changes in fragility (Fig. 8c,d,e,f), in agreement with the observations of Robert et al. 

(2019). At constant silica concentration, depolymerized alkali silicate melts are slightly more 

fragile than polymerized tectosilicate melts. i-Melt predicts that peraluminous Al-rich melts 

generally are more and more fragile with increasing Al concentration. However, at ratios of 

Al/(Al+Na+K) higher than ~ 0.6, the model is forced to extrapolate due to the lack of data (Fig. 

1). This observation could indicate that (i) extrapolations are not fully robust and should be 

considered with care, or (ii) high Al concentrations indeed lead to high melt fragility. 

3.5.2 Configurational entropy of alkali aluminosilicate melts



 26

Sconf(Tg) shows a complex dependence on melt composition and structure because it has 

two sources: (i) a topological origin that results from the network topology (distribution of bond 

angles, bond distances, etc.), and (ii) a chemical one that results from the mixing of cations in 

the atomic structure. The later source shows variations that can be complex. Indeed, mixing 

between two cations in silicate and aluminosilicate melts can be random (Neuville and Richet, 

1991; Neuville and Mysen, 1996) or not (Seifert et al., 1982; Lee, 2005; Neuville, 2006; Le Losq 

and Neuville, 2013, 2017; Robert et al., 2019). It can occur between Si and Al “network 

formers” (Neuville and Mysen, 1996), between “network modifier” metal cations (Richet, 1984; 

Neuville and Richet, 1991; Lee et al., 2003) or between the “charge compensator” metal cations 

that compensate the electrical charge deficit of AlO4
- units in aluminosilicate compositions (e.g., 

Neuville and Richet, 1991; Robert et al., 2019). Such mixing effects usually are difficult to 

predict, and subject to interpretation. 

i-Melt helps solve this problem by enabling systematic quantification and visualization of 

such phenomena. As observed in Figure 9, Sconf(Tg) displays systematic variations as a function 

of the chemical composition of alkali aluminosilicate melts. Increasing Al concentration leads to 

decreasing Sconf(Tg) (Fig. 9a,b). The Al/(Na+K) ratio also largely affects the way Na and K mix. 

Without Al, their interaction results in an entropy excess (Fig. 9c) and, hence, in a decrease in 

melt viscosity because viscosity is proportional to the inverse of Sconf(Tg) (eq. 1). This pattern 

changes with increasing Al/(Na+K), because as Al is introduced into the glass network, the role 

of alkali metals changes (see chapters 4 and 8 of Mysen and Richet, 2019). In the presence of 

Al, Na and K are present in different structural environments (McKeown et al., 1985; Jackson et 

al., 1987; Le Losq and Neuville, 2017), inducing less and less excess entropy of mixing as 

Al/(Na+K) increases (Le Losq et al., 2017; Robert et al., 2019). As a result, Sconf(Tg) varies more 

and more linearly upon mixing Na and K in Al-rich melts (Fig. 9d,e,f). Finally, i-Melt predicts 

small Sconf(Tg) values for K-rich and Al-rich melts (Fig. 9b,f), in agreement with experimental 

findings (Richet and Bottinga, 1984; Le Losq and Neuville, 2013; Le Losq et al., 2017; Robert et 

al., 2019). This is explained by Al and K respectively promoting the polymerization of the melt 

network (decrease in NBO/T) and the formation of larger cooperative molecular domains 
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involved in the melt viscous flow (e.g., Riebling, 1966; Taylor and Rindone, 1970; Rammensee 

and Fraser, 1982; Mysen, 1988; Toplis et al., 1997b; Mysen and Toplis, 2007; Xiang et al., 2013; 

Le Losq et al., 2017). The variations in Sconf(Tg) with the composition of aluminosilicate melts, 

thus, depend mostly on (i) how metal cations interact together, and (ii) on how those 

interactions are affected by the presence of Al, and by Si-Al interactions.

3.5.4 Extrapolations

As “intelligent” as they can be, machine learning algorithms still are interpolative in 

nature. Therefore, it is not necessarily wise to ask them to perform predictions outside the 

range of their training dataset. Here, we tested how the model generally behaves when 

performing such extrapolations by (i) removing some density and optical refractive index data 

along the SiO2-Al2O3 join and (ii) trying to predict a value for a composition very far from those 

included in its training dataset, the Tg of Al2O3. Regarding (i), the model tends to provide a 

constant value for density or optical refractive index when asked to make predictions for 

compositions beyond those included in its training set. This situation is both good and bad. It is 

good because it indicates that the model does not “explode”, i.e. starts to predict small or large 

values very different from the mean ones when extrapolating (this is what happens traditionally 

with polynomial functions, for instance). It obviously is bad because it means that i-Melt will 

remains mostly interpolative in nature for some parameters like fragility, at least for the 

moment. Turning to the second test, we first estimated the Al2O3 Tg from the data of Secrist 

and MacKenzie (1965) and Urbain et al. (1982). Secrist and MacKenzie (1965) estimated a 

viscosity of 4x1010 Pa·s at 1173 K from the rate of crystallization of vapor-formed Al2O3 

amorphous films. Fitting the high temperature viscosity data of Urbain et al. (1982) for Al2O3 

and this point with equation 3, we have for Al2O3 melt AVFT = -2.8 ± 0.1, BVFT = 1842 ± 176 and 

CVFT = 1035 ± 19, and Tg = 1035 ± 19 K. i-Melt predicts a Tg of 815 ± 37 K for Al2O3. This Tg 

estimation is realistic (the model did not ‘explode’) but significantly below the value calculated 

from viscosity data. This highlights that extrapolations with models like i-Melt may produce 

apparently realistic results, but still may be far from the true value.
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 With limited data, it is inevitable that i-Melt has to extrapolate for some predictions. 

Following the above discussion, caution is needed. Fortunately, for some properties, results 

appear to be broadly plausible. This is the case for Sconf(Tg). For instance, the model predicts a 

continuous decrease of Sconf(Tg) with increasing Al2O3 in the peraluminous field (Fig. 9a,b), a 

prediction that agrees with experimental data in sodium peraluminous melts (Le Losq et al., 

2014). To conclude, this discussion highlights that, if necessary, machine learning model 

extrapolations can be performed but should be considered with care, making sure that 

predictions are realistic compared to the known trends of material properties.

4. Discussion

Several questions motivated the development of i-Melt and its current focus on the 

Na2O-K2O-Al2O3-SiO2 system: 

- How are chemical composition, atomic structure and physical properties of such alkali 

aluminosilicate melts connected?

- How do changes in the Na/K ratio affect the structure and properties of alkali aluminosilicate 

melts? What role does this play in the eruptive dynamics of volcanic eruptions involving rhyolite 

magmas?

4.1 Exploration of composition-structure-property links

As i-Melt allows a systematic exploration of the links between different observed and 

latent variables, we can investigate the contributions of topological (i.e, the geometry and 

interconnectivity of the T-O-T network, with T= Si,Al) and chemical effects (i.e., effects resulting 

from mixing different cations in similar sites) to different properties. For example, RRaman, and, 

therefore, the glass network topology correlates with the glass transition temperature (Fig. 

10a). It also correlates with quantities proportional to energy barriers opposed to ionic mobility 

in melts like the BFV term of the Free Volume viscosity equation (Fig. 10b, eq. 2). This result 

agrees very well with the general knowledge of the influence of the topology/connectivity of 
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the aluminosilicate network on melt transport properties (e.g., Bockris et al., 1955; Mysen et 

al., 1980; Mysen, 1991). 

However, the correlation between RRaman and glass transition temperature Tg is not 

perfect. Some influence of the glass composition on the RRaman versus Tg relationship is visible in 

figure 10a. It probably originates from metal cation chemical mixing effects that can affect Tg  

(Isard, 1969; Day, 1976). Indeed, while cationic mixing effects only slightly influence properties 

directly linked to the aluminosilicate network connectivity (Le Losq and Neuville, 2017), they 

strongly affect properties such as Sconf(Tg) that are influenced by cationic / molecular 

interactions and steric hindrance effects (Richet, 1984; Hummel and Arndt, 1985; Neuville and 

Richet, 1991; Neuville and Mysen, 1996; Maehara et al., 2005; Goldstein, 2011). This agrees 

with predictions for Sconf(Tg). The results in figure 10c show a clear effect of melt composition 

on the Sconf(Tg) versus RRaman relationship.  Such chemical effects also affect CFV (eq. 2, Fig. 8d). 

This latter term encompasses local cationic influences on melt free volumes in the Free Volume 

theory (Cohen and Grest, 1979). As a result, it can be expected that mixing different cations will 

affect this term, explaining the observation made in figure 10d. Results actually suggest a link 

between CFV and Sconf(Tg), as corroborated by a Spearman correlation coefficient, rs, of 0.86 

between the two variables.

Other properties show interesting correlations. Figure 11 shows the Spearman 

correlation coefficients between the different variables/properties predicted by i-Melt. We 

observe high correlations between the parameters of the Free Volume and the VFT equations. 

For example, BFV and BVFT are highly correlated (rs = 0.997). While Be is not strongly correlated 

with the latter variables, the ratio Be/Sconf(Tg) is (rs = 0.989 and 0.996 with BFV and BVFT, 

respectively). BFV and BVFT play the role of some kind of activation energies in eqs. 2 and 3. They 

thus are related to the energy barriers opposed to the atomic movements at the root of viscous 

flow. The ratio Be/Sconf(Tg) also is related to those energy barriers (see below, eqs. 9, 10). The 

strong correlations between RRaman and Be/Sconf(Tg), BFV and BVFT (Fig. 11) thus indicates that the 

SiO2-Al2O3 aluminosilicate network connectivity and topology mostly controls those energy 

barriers. This may explain the broad correlation between the network topology as quantified by 
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RRaman and the glass transition temperature of alkali aluminosilicate melts, discussed previously 

(Figs. 10, 11). 

Properties in the denominator in eqs. 1 to 5 show more complex correlations among 

themselves, and with other variables (Fig. 11). A generally strong correlation is observed 

between variables in the denominator of eqs. 1 to 5 and the pre-exponential terms reflecting 

high temperature viscosity limits, namely AVFT, AAM,  AFV and Ae (Fig. 11). For example, rs = -0.87 

for the correlation between Sconf(Tg) and Ae, rs = -0.972 for the correlation between CVFT and 

AVFT, and rs = 0.80 for that between AAM and the fragility, m. This reflects a numerical correlation 

between the pre-exponential terms and the denominators of viscosity equations 1-5. A way to 

avoid such correlations, which can bias calculations, is to set the AVFT, AAM,  AFV and Ae pre-

exponential terms to composition-independent values. Such practice agrees with the general 

idea that there is a common high temperature viscosity limit (Shaw, 1972; Persikov, 1991; 

Russell et al., 2003; Giordano et al., 2008; Russell and Giordano, 2017). However, this can be 

questioned for alkali aluminosilicate melts. Indeed, the study of Robert et al. (2019) suggests 

that, for alkali tectosilicate melts, Ae could vary as a function of the melt Al/Si ratio. This agrees 

with earlier findings of Toplis (1998), who showed that Ae actually varies as a function of the 

ratio Be/(Al+Si) for various alkali and alkaline earth melt compositions. In the present model, 

AVFT, Ae, AFV or AAM are allowed to vary with melt composition, such that we can check if the 

model corroborates the findings of Robert et al. (2019) and Toplis (1998). In Figure 12a, we 

observe that, for compositions covering a wide compositional field of the glass forming domain 

(see inset in Fig. 12b), values of Ae range between ~ -1.0 and ~ -2.5 log10 Pa·s, those of AFV 

between ~ -2.0 and ~ -3.5 log10 Pa·s, those of AAM between ~ -0.2 and ~ -1.0 log10 Pa·s, and 

those of AVFT between ~ -6.0 and -3.7 log10 Pa·s. The distributions of those parameters are 

asymmetric and complex. Ae and AVFT clearly are trimodal, while AFV and AAM distributions are 

asymmetric and present sharp terminations on one of their side. This suggests the existence of 

complex compositional effects. Fig. 12b corroborates this idea, and actually the findings of 

Robert et al. (2019). There is a general effect of the melt Al/Si ratio on the value of Ae. AFV also 

shows variations that correlate, albeit in a complex manner, with Al/Si, while AAM does not 
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show systematic variations with Al/Si (not shown). Those results thus corroborate the 

suggestion that for melts in ternary and quaternary systems, the pre-exponential terms in eqs. 

1 and 2 may slightly depend on compositions, and particularly on the Al and Si concentrations 

and ratios.

4.2 Links between the Adam-Gibbs and the Free Volume theories

The above analysis highlighted important correlations between variables from different 

theories (Fig. 11). The trans-theoretical character of i-Melt allows us to go further: it allows  

systematic inference for a given property using different theories, and observation of the 

relationship between the latent variables of these theories. Here, we are interested in exploring 

the links between the Adam-Gibbs and Free Volume theories to test the proposition of Hodge 

(1994): it should be possible to build a Free Volume version of the Adam-Gibbs theory.

In the Free Volume theory, solid-like and liquid-like molecular cells are distinguished and 

separated by a critical volume, v*. Viscous flow occurs via cooperative molecular movements 

between liquid-like cells. In the Adam-Gibbs theory, viscous flow occurs via cooperative 

motions of molecular segments of a size z*(T), characterized by an intrinsic entropy Sc
*. The two 

theories thus share common philosophical underpinnings, including the important assumption 

that viscous flow occurs via cooperative movements of molecular entities in the melt. This 

relationship can be recognized upon consideration of the parameters of eqs. 1 and 2. Indeed, 

BFV  embeds some structural information because it depends on v*:

BFV = v* zo, (9)

where zo is an adjustable parameter. Similarly, the ratio Be/Sconf(Tg) embeds molecular subunit 

length-scale information as (Toplis, 1998)

Be/Sconf(Tg) = [ Δµ z*(Tg) ] / R , (10)

with Δµ the energy barriers opposed to the rearrangement of molecular subunits of size z*(Tg),  

and R the perfect gas constant. We can consider v* and z* as structural parameters embedding 

information about the volume or length-scale of the cooperative molecular regions. Therefore, 
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these parameters should both depend on melt or glass structure. This is confirmed by the fact 

that both BFV and Be/Sconf(Tg) correlate well with RRaman (Fig. 11). This finding supports the idea 

that it should be possible to develop a Free Volume version of the Adam-Gibbs theory (Hodge, 

1994; Liu et al., 2015). More generally, the links between BFV, Be/Sconf(Tg) and RRaman support the 

general hypothesis that melt viscous flow occurs when a critical molecular length-scale is 

reached. This length-scale can be indirectly observed through Raman signals (Fig. 10b) and 

strongly influences the glass transition temperature Tg (Fig. 10a).

4.3 Structure and properties of alkali-rich molten lavas

4.3.1 Influence on the eruptive dynamics of silicic volcanoes

One question that motivated the implementation of i-Melt is: why, in terms of melt 

structure and properties, are eruptions of silicic volcanoes found to be more explosive when 

the rhyolite melt is rich in K and Al (Di Genova et al., 2017). Indeed, the compositions of silicic 

lavas compiled by Di Genova et al. (2017), form two clusters when viewed in terms of the 

rheological agpaitic index ([Na+ + K+ + Ca2+ + Mg2+ + Fe2+] / [Fe3+ + Al3+]) and K/(K+Na) ratios, 

associated with effusive and explosive eruptions (Fig. 13a). According to Di Genova et al. (2017), 

this correlation seems to stand regardless of the many other critical parameters driving the 

dynamics of volcanic eruptions, such as pre-eruptive volatile content, degassing path or 

nanolite content (e.g., Villemant and Boudon, 1998; Andújar and Scaillet, 2012; Di Genova et 

al., 2017, 2020; Moitra et al., 2018; Cáceres et al., 2020). The eruptive style of rhyolite 

eruptions thus seems influenced by small variations in magma composition, linked to the 

influence of potassium and trivalent cations (Al3+ mainly, but also Fe3+) on the silicate melt 

rheology.  

Most of the lavas emitted at silicic volcanic systems, such as Yellowstone or Long Valley 

(U.S.A.), contain more than 95 % of Na2O, K2O, Al2O3 and SiO2. Therefore, melts in the Na2O-

K2O-Al2O3-SiO2 system may be considered as simplified analogues of the lavas involved in silicic 

volcanic eruptions, and i-Melt can be used to glimpse the links between eruptive dynamics and 
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the composition, structure, and properties of magmas. Of course, this will not take the effect of 

volatile elements into account, but, as highlighted previously, the correlation reported by Di 

Genova et al. (2017) is actually apparently independent of melt water content. In any case, the 

following should be considered with care as i-Melt remains limited to a simple quaternary 

system. In the future, more complete versions of models such as i-Melt will allow more robust 

exploration of the links between eruptive dynamics and the composition, structure, and 

properties of magmas.

i-Melt reveals that the two data point clusters observed in figure 13a are associated 

with different Sconf(Tg) values. One data point cluster, associated with explosive eruptions, 

contains Sconf(Tg) values typically below ~ 9 J mol-1 K-1 , while the other cluster, associated with 

effusive eruptions, incorporates values above this threshold. Those Sconf(Tg) variations indicates 

that decreasing the rheological agpaitic index and increasing K/(K+Na) leads to fewer available 

configurations available for viscous flow molecular movements. This results in increasing the 

melt viscosity, explaining potentially the volcanic eruptive style chemical clustering observed in 

figure 13a. 

To go further, we can look at what happens when the composition of a rhyolite shifts 

from a sodic peralkaline one to a potassic peraluminous one (pink-cyan line in Fig. 13a). Such a 

shift is accompanied by important changes in melt structure. In particular, predicted Raman 

spectra show the apparition of a depolymerized Q3 unit signal in peralkaline melts, while this 

signal is barely present in peraluminous melts (Fig. 13b). Following the methodology developed 

in previous studies (Seifert et al., 1982; Neuville and Mysen, 1996; Le Losq and Neuville, 2013; 

Le Losq et al., 2014), the spectra can be modeled with four bands, assigned to Si-O asymmetric 

vibrations (T2S), Si-O stretching in Q3 units and Si-O stretching in two types of Q4 units (Fig. 13c). 

While the structure of peraluminous melts is dominated by tightly bonded Q4 units, as shown 

by strong intensity near 500 cm-1 (Fig. 13b), that of peralkaline melts sees the apparition of Q3 

units (Fig. 13c) that testify for the depolymerization of the melt as the ratio (Na+K)/Al becomes 

higher than 1 and as alkali elements start to play a network modifier role. As a consequence, 

the calculated NBO/T increases significantly in peralkaline melts as the (Na+K)/Al ratio increases 
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above 1 (Fig. 13d). The transition observed in Fig. 13a thus seems mostly related to the 

importance of the absence/presence of non-bridging oxygens in the melt structure, and to their 

influence on melt properties.

Observations made with i-Melt thus bring important pieces of information: (i) while the 

configurational entropy varies rather smoothly when going from peralkaline to peraluminous 

melts (Fig. 13a), the structure changes substantially with the onset of Q3 units (Fig. 13b,c,d), and 

(ii) as already identified by Di Genova et al. (2017), the role of aluminum is more important than 

that of potassium: most of the variance in figure 13a is actually associated with variations in the 

rheological agpaitic index. The structural and thermodynamic variations, observed in figure 13, 

are associated with very important changes in term of melt viscosity. Indeed, the compositional 

change forming the trend shown in Fig. 13a (pink-cyan line) is accompanied by a change of the 

viscosity of more than three orders of magnitudes at 1000 °C (Supplementary Figure 4).

The above discussion allows understanding structural, thermodynamic and rheological 

changes possibly at the source of the effusive/explosive clustering observed in Fig. 13a. 

However, one should remember that, here, only a simplified system is considered. Other 

variables, such as melt water and iron contents, may have important, and possibly indirect, 

roles too in the correlation observed in Fig. 13a. For instance, an increase in the Al/(Na+K) ratio 

of aluminosilicate melts, in addition to strongly affecting melt polymerization and properties, 

promotes iron reduction (Dickenson and Hess, 1982). Such a phenomenon could promote the 

rapid appearance of iron-bearing nanolites, and hence act as an accelerator in the increase of 

magma viscosity to promote the explosivity of the eruption (Di Genova et al., 2017, 2020; 

Cáceres et al., 2020).

4.3.2 K/Na ratio and the properties of magmas along alkaline magmatic series

In addition to rhyolites, melts along a basanite-phonolite differentiation trend typically 

show high concentrations of sodium and potassium. The properties of such melts could, 

therefore, be affected by the different impact of Na and K on the melt structure and properties. 

To test this idea, it is possible to use i-Melt to study the influence of the K/(K+Na) ratio on the 
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properties and structure of basanite-like to phonolite-like simplified melt compositions. Here, 

we simulate how the properties of a melt change when it evolves from an initial composition 

with 55 mol% SiO2 and Al2O3/SiO2 = 0.18 to a final composition with 67 mol% SiO2 and 

Al2O3/SiO2 = 0.20. The K/(K+Na) of the sodic trend is fixed at 0.33, and that of the potassic trend 

at 0.66. NBO/T of the melts will evolve from 0.63 down to 0.13, such values being reflective of 

those typical of a basanite-phonolite trend. 

Simulating the properties of the melts along such a basanite-like to phonolite-like 

evolution trend, we observe a systematically higher viscosity of the potassic melts (Fig. 14a); 

the most mafic melts show a difference of ~0.5 log10 unit, while the most evolved melts display 

a viscosity difference of more than an order of magnitude. The prediction of the Raman spectra 

of the quenched melts along the two differentiation trends also show systematic differences. 

We observe that the decrease in NBO/T upon melt differentiation is accompanied by 

decreasing Q3 and Q2 Raman signals for both series (Fig. 14b,c). However, K-rich melts appear 

systematically richer in Q3 units, and depleted in Q2 units compared to Na-rich melts. This is 

expected because the equilibrium constant of the reaction 2Q3 = Q2 + Q4  is higher in K-rich 

silicate melts than in Na-rich silicate melts (Maekawa et al., 1991). We further observe stronger 

signals in the 400-600 cm-1 region in K-rich phonolite-like melts, providing evidence for a higher 

Qn-Qn interconnection, in agreement with their higher viscosity.

From those results, the K/(Na+K) ratio along a basanite-phonolite differentiation trend 

may play a role on the properties of the magmas, and, ultimately on the eruptive dynamics at 

surface. However, it should be reminded that water content is the primary factor linked to the 

effusive/explosive dynamics of eruptions involving phonolite melts (Andújar and Scaillet, 2012). 

Therefore, we expect the K/(Na+K) ratio to play a secondary role compared to water content. 

However, this role is not insignificant, particular given the strong influence of melt K/(Na+K) on 

various parameters such as the iron redox state (Cicconi et al., 2015), the diffusion and 

solubility of volatile elements like F and Cl (Balcone-Boissard et al., 2009; Dalou et al., 2015) or 

the speciation and solubility of dissolved water (e.g., Behrens et al., 2001; Le Losq et al., 2015). 

In conjunction with the potential influence of K/(Na+K) on Fe-free and volatile-free melt 
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structure and properties (Fig. 14), this invites further studies of the differences in terms of 

eruptive mechanisms and dynamics between Na-rich and K-rich alkaline magma series. In 

particular, the hypothesis that K-rich alkaline magma series may be linked more frequently to 

explosive dynamics can be proposed and should be tested.

5. Conclusion

i-Melt, a model integrating a feed-forward neural network and physical equations, was 

developed to predict alkali aluminosilicate melt and glass properties, including configurational 

entropy, glass transition temperature, fragility, viscosity, density, optical refractive index and 

Raman spectra. The model allows making predictions with a good precision in the glass forming 

domain. Extrapolations are possible but should be done with care. We see models like i-Melt, 

therefore, as a pragmatic compromise between informative, accurate but limited theoretical 

models and mono-task empirical models. i-Melt can readily be extended to include quantities of 

interest across a range of domains and applications, including glass toughness and hardness. In 

general, the present results show that the possibility of combining machine learning with 

physical and thermodynamic models offers exciting new perspectives.

Applied to rhyolite compositions, i-Melt reveals that the reported chemical tipping point 

between effusive and explosive eruptions is largely linked to the disappearance of non-bridging 

oxygens in Al-rich compositions, which lowers melt configurational entropy and triggers a 

strong increase in melt viscosity. Results on simplified alkaline magmatic series further indicate 

that K-rich melts present systematically higher viscosities, being linked to slight differences in 

the atomic structure as suggested by the predicted Raman spectra of the glasses. When 

considering this result together with the other reported effects of the K/(K+Na) ratio on iron 

redox state, volatile solubility, speciation and diffusivity in phonolitic melts, it can be expected 

that Na-rich or K-rich alkaline magmatic series may be associated with slightly different eruptive 

dynamics.
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Glass name %SiO2 %Al2O3 %K2O %Na2O % total Density, g cm-1

KA80.05 nom. mol% 80.00 5.00 15.00 0.00

nom. wt% 71.40 7.60 21.00 0.00

an. wt% 74.8(4) 7.6(1) 15.1(2) 0.00(4) 97.5(1) 2.320(1)

KA72.07 nom. mol% 72.00 7.00 21.00 0.00

nom. wt% 61.60 10.20 28.20 0.00

an. wt% 61.4(3) 10.2(2) 27.4(3) 0.00(2) 99.0(1) 2.408(1)

KA65.09 nom. mol% 65.00 8.75 26.25 0.00

nom. wt% 53.70 12.30 34.00 0.00

an. wt% 53.3(5) 12.5(4) 31.7(3) 0.00(3) 97.5(1) 2.451(9)

NA65.09 nom. mol% 65.00 8.75 0.00 26.25

nom. wt% 60.79 13.89 0.00 25.32

an. wt% 61.7(4) 13.7(2) 0.03(2) 24.5(7) 99.9(2) 2.472(4)

NA58.10 nom. mol% 58.00 10.50 0.00 31.50

nom. wt% 53.55 16.45 0.00 30.00

an. wt% 54.6(3) 16.4(2) 0.05(2) 28.9(4) 99.9(1) 2.502(5)

Table 1. Composition of the synthesized glasses. Nominal (nom.) and analyzed (an.) 

compositions are reported. Standard deviations on measured values on 10 different spots (for 

EPMA measurements) or glass chips (for density measurements) are given in parenthesis (1σ 

confidence interval).
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T, K KA80.05 T, K KA72.07 T, K KA65.09 T, K NA65.09 T, K NA58.10

1013.1 9.10 921.5 9.37 941.3 9.55 834.0 9.01 827.3 10.10

1001.8 9.32 891.0 10.17 935.1 9.71 829.0 9.18 836.9 9.73

989.6 9.51 872.0 10.75 919.4 10.13 813.8 9.61 817.6 10.51

981.6 9.78 852.0 11.40 913.6 10.32 803.2 9.94 796.2 11.42

967.6 10.05 898.7 10.78 798.6 10.09 805.7 10.97

949.7 10.50 892.0 10.96 787.5 10.50 847.1 9.36

940.3 10.83 882.1 11.28 779.9 10.81 855.9 9.09

928.2 11.05 867.3 11.86 773.7 11.07 828.3 10.01

918.4 11.32 855.4 12.29 772.9 11.07 834.4 9.81

905.1 11.63 762.6 11.52 787.4 11.80

896.6 11.92 756.3 11.74 777.4 12.36

752.1 11.95

Table 2. Viscosity measurements in log10 Pa·s. Errors on viscosity are lower or equal to 0.03 

log10 Pa·s.
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Data subset: Training Validation Testing

Adam-Gibbs (eq. 1, log10 Pa·s) 0.3 0.3 0.4

Free Volume (eq. 2, log10 Pa·s) 0.3 0.4 0.4

VFT (eq. 3, log10 Pa·s) 0.3 0.4 0.4

MYEGA (eq. 5, log10 Pa·s) 0.3 0.4 0.4

Avramov-Milchev (eq. 4, log10 Pa·s) 0.3 0.4 0.4

Density (g cm-1) 0.01 0.02 0.01

Raman spectra (%, relative RMSE) 20 25 -

Refractive index 0.003 0.004 0.006

Table 3: Root-mean-square errors (RMSE) between predictions and measurements.
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Figure 1. Datasets for melt viscosity (a), glass Raman spectroscopy (b), glass density (C) and 

glass refractive index (d). Each symbol corresponds to a sample. The glass-forming domain at 

usual laboratory cooling rates is indicated in grey.

Figure 2. Schematic of i-Melt. An artificial neural network takes input melt composition, and 

outputs various melt and glass properties. Once trained, relationships between chemistry, 

structure and properties of melts and glasses can be systematically explored.

Figure 3. Prediction examples of melt viscosity. Viscosity can be predicted using various 

theories with a great accuracy, as shown by examples highlighting the good match between 

measurements (symbols) and model (curves) predictions from the Adam-Gibbs and Free 

Volume theories.

Figure 4. Glass Raman spectra along the SiO2-Na2O binary. (a) Comparison between 

experimental (plain lines)  and predicted (dashed lines). Ranges of Si-O-Si intertetrahedral (Qn-

Qn) vibrations and Si-O stretching vibrations in Qn units are indicated at the top. (b) 2D contour 

plot of the predicted Raman intensities (a. u.) as a function of Raman shifts (cm-1) and Na2O 

content (mol fraction).

Figure 5. RRaman parameter (a. u., see text) as a function of silica mol fraction in (a) silicate Na2O-

SiO2 and (b) tectosilicate NaAlO4-SiO2  glasses. Symbols are data, dashed lines are model 

predictions (mean of predictions from 10 models), and the blue shaded area show the 2σ 

confidence intervals (standard deviations of predictions from 10 models).

Figure 6: Glass fragility versus melt Cp
conf(Tg)/Sconf(Tg) ratio. Symbols are predictions of the deep 

learning framework on the different subsets of the Dviscosity dataset (mean of predictions from 

10 models). The dashed line is the relationship observed by Webb (2008, abbreviated W2008 in 

the figure) using experimental heat capacity data, and the dotted line is that observed by 

Russell and Giordano (2017, abbreviated RG2017 in the figure). Except two extreme outliers 

that corresponds to Al2O3-SiO2 melts with more than 30 mol% Al2O3, a general good agreement 

is observed. 
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Figure 7: Deep learning framework predicted variations in (a,b) glass transition temperature Tg, 

(c,d) relative density and (e,f) refractive index at 589 nm in the upper part (SiO2 > 50 mol%) of 

the ternary Na (left) and K (right) aluminosilicate systems.

Figure 8: Melt fragility, m,  of melts in the upper part (SiO2 > 50 mol%) of the K2O-Na2O-Al2O3-

SiO2 system. Fragility is represented in the upper part of the ternary sodium (a) and potassium 

(b) aluminosilicate systems, as well as as a function of the silica fraction and the potassium to 

total alkali ratio of silicate, peralkaline and tectosilicate melts (c, d, e, f). 

Figure 9: Configurational entropy at Tg, Sconf(Tg), of melts in the upper part (SiO2 > 50 mol%) of 

the K2O-Na2O-Al2O3-SiO2 system. Sconf(Tg) vary non-linearly with oxide contents in the ternary 

diagrams (a) Na2O-Al2O3-SiO2 and (b) K2O-Al2O3-SiO2. In silicate melts (c), a mixed alkali effect 

(MAE) is observed upon Na-K mixing. It disappears as [Al]/[Na+K] increases (d, e, f).

Figure 10: Melt and glass properties vary in a complex way with glass network topology. i-Melt 

reveals that parameters such as (a) the viscous glass transition temperature Tg  and (b) BFV, an 

activation energy term in the Free Volume theory (eq. 2), correlate broadly with RRaman. Other 

terms also show more complex variations, influenced by cationic mixing interactions and steric 

hindrance effects, such as the glass configurational entropy Sconf(Tg) (c) or the free volume 

parameter CFV (d). Each symbol represents the calculation for a randomly generated 

composition (n=10,000) in the glass-forming domain of the Na2O-K2O-Al2O3-SiO2 system (Fig. 1).

Figure 11: Spearman correlation matrix between the different variables predicted by i-Melt or 

calculated from those predictions. The large the circles, the larger the correlation. A correlation 

of 1 or -1 means a perfect monotonic  (possibly non linear) correlation. Spearman correlation 

coefficients were calculated from the predictions for the 10,000 randomly generated 

composition in the glass-forming domain of the Na2O-K2O-Al2O3-SiO2 system (inset in Fig. 10).

Figure 12: High temperature viscosity limit. (a) histograms of the high temperature viscosity 

limits AVFT, Ae, AFV and AAM predicted for 10,000 melt composition randomly selected from the 

glass-forming domain of the Na2O-K2O-Al2O3-SiO2 system. (b) Ae versus Al/(Al+Si) diagram 
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highlighting a possible compositional dependence of Ae. The ternary diagram shows again the 

randomly selected compositions.

Figure 13: Influence of Al and K/(K+Na) ratios on rhyolite structure and properties. (a) 

configurational entropy maps as a function of the ratio K/(K+Na) and the rheological agpaitic 

index, calculated as (Na2O + K2O + CaO + MgO + FeO)/(Al2O3 + Fe2O3). On top of the maps, 

symbols of rhyolite effusive (purple circles) and explosive (black squares) eruptions from Di 

Genova et al. (2017) are represented. Some scatter in the Sconf(Tg) contour map is visible and 

results from model noise. The cyan to pink line is a compositional transect used in (b) to (d). (b) 

Raman spectra predicted for melts along the cyan-pink transect shown in (a). (c) Example of 

peak-fitting of the Raman spectra with four gaussian peaks (see text). (d) Evolution of the 

NBO/T calculated from melt composition (dashed grey line) and from Q3 peak areas, converted 

using the Q3 Raman cross-section from Mysen (2007).

Figure 14: Influence of the K/(K+Na) ratio on the viscosity and atomic structure of alkali 

aluminosilicate melts, mimicking the evolution from a basanite-like mafic pole to a phonolite-

like pole. (a) Viscosity (log10 Pa·s) at 1100 °C of the melts as a function of their silica mol 

fraction. Two trends are visible for  Na-rich melts with K/(K+Na) = 0.33, and K-rich melts with 

K/(K+Na) = 0.66. (b) and (c) Predicted evolution of the Raman spectra of Na-rich and K-rich melt 

compositions, respectively. Mean predictions are generated feeding the 10 models with 100 

melt compositions generated linearly between the end-member poles (see text for details).
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