52 research outputs found

    CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations

    Get PDF
    In this study we analyze and discuss the optical properties of various tandem architectures: mechanically stacked (four-terminal) and monolithically integrated (two-terminal) tandem devices, consisting of a methyl ammonium lead triiodide (CH3NH3PbI3) perovskite top solar cell and a crystalline silicon bottom solar cell. We provide layer thickness optimization guidelines and give estimates of the maximum tandem efficiencies based on state-of-the-art sub cells. We use experimental complex refractive index spectra for all involved materials as input data for an in-house developed optical simulator CROWM. Our characterization based simulations forecast that with optimized layer thicknesses the four-terminal configuration enables efficiencies over 30%, well above the current single-junction crystalline silicon cell record of 25.6%. Efficiencies over 30% can also be achieved with a two-terminal monolithic integration of the sub-cells, combined with proper selection of layer thicknesses. (C) 2015 Optical Society of Americ

    Near-field interactions between metal nanoparticle surface plasmons and molecular excitons in thin-films: part I: absorption

    Get PDF
    In this and the following paper (parts I and II, respectively), we systematically study the interactions between surface plasmons of metal nanoparticles (NPs) with excitons in thin-films of organic media. In an effort to exclusively probe near-field interactions, we utilize spherical Ag NPs in a size-regime where far-field light scattering is negligibly small compared to absorption. In part I, we discuss the effect of the presence of these Ag NPs on the absorption of the embedding medium by means of experiment, numerical simulations, and analytical calculations, all shown to be in good agreement. We observe absorption enhancement in the embedding medium due to the Ag NPs with a strong dependence on the medium permittivity, the spectral position relative to the surface plasmon resonance frequency, and the thickness of the organic layer. By introducing a low index spacer layer between the NPs and the organic medium, this absorption enhancement is experimentally confirmed to be a near field effect In part II, we probe the impact of the Ag NPs on the emission of organic molecules by time-resolved and steady-state photoluminescence measurements

    Transparent Electrodes in Silicon Heterojunction Solar Cells: Influence on Contact Passivation

    Get PDF
    Charge carrier collection in silicon heterojunction solar cells occurs via intrinsic/doped hydrogenated amorphous silicon layer stacks deposited on the crystalline silicon wafer surfaces. Usually, both the electron and hole collecting stacks are externally capped by an n-type transparent conductive oxide, which is primarily needed for carrier extraction. Earlier, it has been demonstrated that the mere presence of such oxides can affect the carrier recombination in the crystalline silicon absorber. Here, we present a detailed investigation of the impact of this phenomenon on both the electron and hole collecting sides, including its consequences for the operating voltages of silicon heterojunction solar cells. Based on our findings, we define guiding principles for improved passivating contact design for high-efficiency silicon solar cells

    Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells

    Get PDF
    Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm2), is still far from standard industrial sizes. We present a1cm2 near-infrared transparent perovskite solar cell with 14.5% steady- state efficiency, as compared to 16.4% on 0.25 cm2. By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency of 25.2%, with a 0.25 cm2 top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm2 large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify efficiency-limiting factors and discuss the potential for further performance improvement

    Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells

    Get PDF
    Perovskite/crystalline silicon tandem solar cells have the potential to reach efficiencies beyond those of silicon single-junction record devices. However, the high-temperature process of 500 °C needed for state-of-the-art mesoscopic perovskite cells has, so far, been limiting their implementation in monolithic tandem devices. Here, we demonstrate the applicability of zinc tin oxide as a recombination layer and show its electrical and optical stability at temperatures up to 500 °C. To prove the concept, we fabricate monolithic tandem cells with mesoscopic top cell with up to 16% efficiency. We then investigate the effect of zinc tin oxide layer thickness variation, showing a strong influence on the optical interference pattern within the tandem device. Finally, we discuss the perspective of mesoscopic perovskite cells for high-efficiency monolithic tandem solar cells

    Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency

    Get PDF
    Tandem devices combining perovskite and silicon solar cells are promising candidates to achieve power conversion efficiencies above 30% at reasonable costs. State-of-the-art monolithic two-terminal perovskite/silicon tandem devices have so far featured silicon bottom cells that are polished on their front side to be compatible with the perovskite fabrication process. This concession leads to higher potential production costs, higher reflection losses and non-ideal light trapping. To tackle this issue, we developed a top cell deposition process that achieves the conformal growth of multiple compounds with controlled optoelectronic properties directly on the micrometre-sized pyramids of textured monocrystalline silicon. Tandem devices featuring a silicon heterojunction cell and a nanocrystalline silicon recombination junction demonstrate a certified steady-state efficiency of 25.2%. Our optical design yields a current density of 19.5 mA cm−2 thanks to the silicon pyramidal texture and suggests a path for the realization of 30% monolithic

    Thin Film Metal Nanocluster Light-Emitting Devices

    No full text
    Light-emitting devices that utilize thin films of metal nanoclusters as quantum emitters are presented. Implementing Ag as well as Au nanoclusters, the versatility of the approach is demonstrated, and it is shown that the electroluminescence measured from these devices is tunable by the choice of nanocluster. Ultimately, it is demonstrated that metal nanoclusters represent an additional option for future light-generating applications

    Impact of organic overlayers on a-Si:H/c-Si surface potential

    No full text
    Bilayers of intrinsic and doped hydrogenated amorphous silicon, deposited on crystalline silicon (c-Si) surfaces, simultaneously provide contact passivation and carrier collection in silicon heterojunction solar cells. Recently, we have shown that the presence of overlaying transparent conductive oxides can significantly affect the c-Si surface potential induced by these amorphous silicon stacks. Specifically, deposition on the hole-collecting bilayers can result in an undesired weakening of contact passivation, thereby lowering the achievable fill factor in a finished device. We test here a variety of organic semiconductors of different doping levels, overlaying hydrogenated amorphous silicon layers and silicon-based hole collectors, to mitigate this effect. We find that these materials enhance the c-Si surface potential, leading to increased implied fill factors. This opens opportunities for improved device performance. Published by AIP Publishing
    corecore