985 research outputs found

    Similarities of gauge and gravity amplitudes

    Full text link
    We review recent progress in computations of amplitudes in gauge theory and gravity. We compare the perturbative expansion of amplitudes in N=4 super Yang-Mills and N=8 supergravity and discuss surprising similarities.Comment: Talk presented by Harald Ita at "Continuous Advances in QCD 2006", 7 page

    Perturbative Gravity and Twistor Space

    Get PDF
    The recent progress in computing gauge theory amplitudes can be extended, in many cases, to theories incorporating gravity. This has improved our understanding of the perturbative expansion of N=8 supergravity supporting the ``no-triangle hypothesis'' that N=8 one-loop amplitudes may be expressed in terms of scalar box integral functions.Comment: Talk presented by N. E. J. Bjerrum-Bohr at Loop and Legs 2006, 5 page

    The Momentum Kernel of Gauge and Gravity Theories

    Get PDF
    We derive an explicit formula for factorizing an nn-point closed string amplitude into open string amplitudes. Our results are phrased in terms of a momentum kernel which in the limit of infinite string tension reduces to the corresponding field theory kernel. The same momentum kernel encodes the monodromy relations which lead to the minimal basis of color-ordered amplitudes in Yang-Mills theory. There are interesting consequences of the momentum kernel pertaining to soft limits of amplitudes. We also comment on surprising links between gravity and certain combinations of kinematic and color factors in gauge theory.Comment: 19 pages, 1 figur

    On tree amplitudes with gluons coupled to gravitons

    Full text link
    In this paper, we study the tree amplitudes with gluons coupled to gravitons. We first study the relations among the mixed amplitudes. With BCFW on-shell recursion relation, we will show the color-order reversed relation, U(1)U(1)-decoupling relation and KK relation hold for tree amplitudes with gluons coupled to gravitons. We then study the disk relation which expresses mixed amplitudes by pure gluon amplitudes. More specifically we will prove the disk relation for mixed amplitudes with gluons coupled to one graviton. Using the disk relation and the properties of pure gluon amplitudes, the color-order reversed relation, U(1)U(1)-decoupling relation and KK relation for mixed amplitudes can also be proved. Finally, we give some brief discussions on BCJ-like relation for mixed amplitudes.Comment: 33pages,no figur

    An R^4 non-renormalisation theorem in N=4 supergravity

    Full text link
    We consider the four-graviton amplitudes in CHL constructions providing four-dimensional N=4 models with various numbers of vector multiplets. We show that in these models the two-loop amplitude has a prefactor of d^2R^4. This implies a non-renormalisation theorem for the R^4 term, which forbids the appearance of a three-loop ultraviolet divergence in four dimensions in the four-graviton amplitude. We connect the special nature of the R^4 term to the U(1) anomaly of pure N=4 supergravity.Comment: v2: added comments about one-loop UV divergences. Assorted stylistic corrections. Added references. v3: Eq. III.21 corrected and assorted minor corrections and clarifications. Version to be published. v4: minor corrections. 18 pages. one figur

    Loop amplitudes in gauge theories: modern analytic approaches

    Full text link
    This article reviews on-shell methods for analytic computation of loop amplitudes, emphasizing techniques based on unitarity cuts. Unitarity techniques are formulated generally but have been especially useful for calculating one-loop amplitudes in massless theories such as Yang-Mills theory, QCD, and QED.Comment: 34 pages. Invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories." v2: typesetting macro error fixe

    Monte Carlo simulation of ice models

    Full text link
    We propose a number of Monte Carlo algorithms for the simulation of ice models and compare their efficiency. One of them, a cluster algorithm for the equivalent three colour model, appears to have a dynamic exponent close to zero, making it particularly useful for simulations of critical ice models. We have performed extensive simulations using our algorithms to determine a number of critical exponents for the square ice and F models.Comment: 32 pages including 15 postscript figures, typeset in LaTeX2e using the Elsevier macro package elsart.cl

    Proof of the MHV vertex expansion for all tree amplitudes in N=4 SYM theory

    Full text link
    We prove the MHV vertex expansion for all tree amplitudes of N=4 SYM theory. The proof uses a shift acting on all external momenta, and we show that every N^kMHV tree amplitude falls off as 1/z^k, or faster, for large z under this shift. The MHV vertex expansion allows us to derive compact and efficient generating functions for all N^kMHV tree amplitudes of the theory. We also derive an improved form of the anti-NMHV generating function. The proof leads to a curious set of sum rules for the diagrams of the MHV vertex expansion.Comment: 40 pages, 7 figure

    Orientational Defects in Ice Ih: An Interpretation of Electrical Conductivity Measurements

    Full text link
    We present a first-principles study of the structure and energetics of Bjerrum defects in ice Ih and compare the results to experimental electrical conductivity data. While the DFT result for the activation energy is in good agreement with experiment, we find that its two components have quite different values. Aside from providing new insight into the fundamental parameters of the microscopic electrical theory of ice, our results suggest the activity of traps in doped ice in the temperature regime typically assumed to be controlled by the free migration of L defects.Comment: 4 pages, 4 Figures, 1 Tabl

    Charge reversal of colloidal particles

    Full text link
    A theory is presented for the effective charge of colloidal particles in suspensions containing multivalent counterions. It is shown that if colloids are sufficiently strongly charged, the number of condensed multivalent counterion can exceed the bare colloidal charge leading to charge reversal. Charge renormalization in suspensions with multivalent counterions depends on a subtle interplay between the solvation energies of the multivalent counterions in the bulk and near the colloidal surface. We find that the effective charge is {\it not} a monotonically decreasing function of the multivalent salt concentration. Furthermore, contrary to the previous theories, it is found that except at very low concentrations, monovalent salt hinders the charge reversal. This conclusion is in agreement with the recent experiments and simulations
    • …
    corecore