18 research outputs found
The Nature Index: A General Framework for Synthesizing Knowledge on the State of Biodiversity
The magnitude and urgency of the biodiversity crisis is widely recognized within
scientific and political organizations. However, a lack of integrated measures
for biodiversity has greatly constrained the national and international response
to the biodiversity crisis. Thus, integrated biodiversity indexes will greatly
facilitate information transfer from science toward other areas of human
society. The Nature Index framework samples scientific information on
biodiversity from a variety of sources, synthesizes this information, and then
transmits it in a simplified form to environmental managers, policymakers, and
the public. The Nature Index optimizes information use by incorporating expert
judgment, monitoring-based estimates, and model-based estimates. The index
relies on a network of scientific experts, each of whom is responsible for one
or more biodiversity indicators. The resulting set of indicators is supposed to
represent the best available knowledge on the state of biodiversity and
ecosystems in any given area. The value of each indicator is scaled relative to
a reference state, i.e., a predicted value assessed by each expert for a
hypothetical undisturbed or sustainably managed ecosystem. Scaled indicator
values can be aggregated or disaggregated over different axes representing
spatiotemporal dimensions or thematic groups. A range of scaling models can be
applied to allow for different ways of interpreting the reference states, e.g.,
optimal situations or minimum sustainable levels. Statistical testing for
differences in space or time can be implemented using Monte-Carlo simulations.
This study presents the Nature Index framework and details its implementation in
Norway. The results suggest that the framework is a functional, efficient, and
pragmatic approach for gathering and synthesizing scientific knowledge on the
state of biodiversity in any marine or terrestrial ecosystem and has general
applicability worldwide
Lactate and Choline Metabolites Detected In Vitro by Nuclear Magnetic Resonance Spectroscopy Are Potential Metabolic Biomarkers for PI3K Inhibition in Pediatric Glioblastoma
The phosphoinositide 3-kinase (PI3K) pathway is believed to be of key importance in pediatric glioblastoma. Novel inhibitors of the PI3K pathway are being developed and are entering clinical trials. Our aim is to identify potential non-invasive biomarkers of PI3K signaling pathway inhibition in pediatric glioblastoma using in vitro nuclear magnetic resonance (NMR) spectroscopy, to aid identification of target inhibition and therapeutic response in early phase clinical trials of PI3K inhibitors in childhood cancer. Treatment of SF188 and KNS42 human pediatric glioblastoma cell lines with the dual pan-Class I PI3K/mTOR inhibitor PI-103, inhibited the PI3K signaling pathway and resulted in a decrease in phosphocholine (PC), total choline (tCho) and lactate levels (p<0.02) as detected by phosphorus (31P)- and proton (1H)-NMR. Similar changes were also detected using the pan-Class I PI3K inhibitor GDC-0941 which lacks significant mTOR activity and is entering Phase II clinical trials. In contrast, the DNA damaging agent temozolomide (TMZ), which is used as current frontline therapy in the treatment of glioblastoma postoperatively (in combination with radiotherapy), increased PC, glycerophosphocholine (GPC) and tCho levels (p<0.04). PI-103-induced NMR changes were associated with alterations in protein expression levels of regulatory enzymes involved in glucose and choline metabolism including GLUT1, HK2, LDHA and CHKA. Our results show that by using NMR we can detect distinct biomarkers following PI3K pathway inhibition compared to treatment with the DNA-damaging anti-cancer agent TMZ. This is the first study reporting that lactate and choline metabolites are potential non-invasive biomarkers for monitoring response to PI3K pathway inhibitors in pediatric glioblastoma