56 research outputs found

    Antioxidants and muscle growth in elderly : the effect of supplementation with vitamin C and E on muscle growth and maximal strength during 12 weeks of resistance exercise in eldery men

    Get PDF
    Masteroppgave i idrettsvitenskap - Universitetet i Agder 2013INTRODUCTION: Supplementation with antioxidants could either facilitate or hamper adaptations to resistance exercise due to redox-sensitive signaling pathways that regulate protein synthesis. Thus, the aim of the present study was to investigate the effect supplementation with vitamin C and E on muscle growth and maximal strength during 12 weeks of resistance exercise in elderly men. METHODS: Thirty-four elderly males (60 – 81 years) were randomized to either an antioxidant group (N=17; 1000 mg of vitamin C and 235 mg of vitamin E per day) or a placebo group (N=17). Muscle growth was assessed as changes in lean mass with dual-energy X-ray absorptiometry and local muscle thickness with ultrasound imaging. Maximal strength was measured as one-repetition maximum (1RM). All participants following a supervised undulating periodized program 3 times/week. RESULTS: Total lean mass increased by 3.9% (95% confidence intervals 3.0-5.2) and 1.2% (0-3.6) in the placebo and antioxidant group, respectively; revealing larger gains in the placebo group (p=0.03). Similarly, results from the thickness of rectus femoris increased more in the placebo group (16.2% [12.8-24.1]) than in the antioxidant group (10.9% [9.8-13.5]; p=0.01). Changes in lean mass of trunk and arms, as well as muscle thickness of elbow flexors and vastus lateralis, did not differ significantly between groups. With no group differences, 1RM improved in the range of 15-21% in both groups (p<0.001). CONCLUSION: Supplementation with vitamin C and E had no positive effects on the adaptation to resistance exercise in elderly men, but seemed on the contrary to hinder muscle growth

    Antioxidants and muscle growth in elderly : the effect of supplementation with vitamin C and E on muscle growth and maximal strength during 12 weeks of resistance exercise in eldery men

    Get PDF
    INTRODUCTION: Supplementation with antioxidants could either facilitate or hamper adaptations to resistance exercise due to redox-sensitive signaling pathways that regulate protein synthesis. Thus, the aim of the present study was to investigate the effect supplementation with vitamin C and E on muscle growth and maximal strength during 12 weeks of resistance exercise in elderly men. METHODS: Thirty-four elderly males (60 – 81 years) were randomized to either an antioxidant group (N=17; 1000 mg of vitamin C and 235 mg of vitamin E per day) or a placebo group (N=17). Muscle growth was assessed as changes in lean mass with dual-energy X-ray absorptiometry and local muscle thickness with ultrasound imaging. Maximal strength was measured as one-repetition maximum (1RM). All participants following a supervised undulating periodized program 3 times/week. RESULTS: Total lean mass increased by 3.9% (95% confidence intervals 3.0-5.2) and 1.2% (0-3.6) in the placebo and antioxidant group, respectively; revealing larger gains in the placebo group (p=0.03). Similarly, results from the thickness of rectus femoris increased more in the placebo group (16.2% [12.8-24.1]) than in the antioxidant group (10.9% [9.8-13.5]; p=0.01). Changes in lean mass of trunk and arms, as well as muscle thickness of elbow flexors and vastus lateralis, did not differ significantly between groups. With no group differences, 1RM improved in the range of 15-21% in both groups (p<0.001). CONCLUSION: Supplementation with vitamin C and E had no positive effects on the adaptation to resistance exercise in elderly men, but seemed on the contrary to hinder muscle growth

    Simulated Game-Based Ice Hockey Match Design (Scrimmage) Elicits Greater Intensity in External Load Parameters Compared With Official Matches

    Get PDF
    Objective: A limited number of studies have explored the external load experienced in indoor sports such as ice hockey, and few the link between training and match performance. As a paucity exists within this topic, this study explored whether a simulated match design (i.e., scrimmage) could be representative of official match demands and elicit similar external loads as in official matches in a group of elite youth male ice hockey players. Methods: A total of 26 players were monitored during eight official and four simulation matches using a Local Positioning System. Total distance, max velocity, slow (0–10.9 km/h), moderate (11–16.9 km/h), high (17.0–23.9 km/h), and sprint (>24 km/h) speed skating distance, distance per min, PlayerLoadTM, PlayerLoadTM per min, high-intensity events (HIEs) (>2.5 m/s−2), acceleration (ACCs), decelerations (DECs), and change of directions (CODs) were extracted from the tracking devices. A two-level regression analysis was conducted to compare the difference between match types when controlling for time on ice, match day, and position. Results: Between match-type results showed a credible difference in all variables except max velocity and ACCs. Distance per min was 27.3% higher during simulation matches and was explained by a 21.3, 24.1, and 14.8% higher distance in sprint-, high-, and moderate speed skating distance, while slow speed-skating distance was 49.2% lower and total distance only trivially different from official to simulation matches. Total PlayerLoadTM was 11.2% lower, while PlayerLoadTM per min was 8.5% higher during simulation matches. HIEs, CODs, and DECs were 10.0, 11.9, and 22.3% higher during simulation matches. Conclusion: The simulated match design is related to official match demands with comparable match-time, playing time, number of shifts, and shift duration. However, simulation matches provoked a higher external load output compared with official matches, possibly explained by a more continuous movement design. A game-based simulation match design can therefore be utilized when match-related actions at high intensity are warranted.publishedVersio

    The Effect of Carbohydrate Intake on Strength and Resistance Training Performance: A Systematic Review

    Get PDF
    High carbohydrate intakes are commonly recommended for athletes of various sports, including strength trainees, to optimize performance. However, the effect of carbohydrate intake on strength training performance has not been systematically analyzed. A systematic literature search was conducted for trials that manipulated carbohydrate intake, including supplements, and measured strength, resistance training or power either acutely or after a diet and strength training program. Studies were categorized as either (1) acute supplementation, (2) exercise-induced glycogen depletion with subsequent carbohydrate manipulation, (3) short-term (2–7 days) carbohydrate manipulation or (4) changes in performance after longer-term diet manipulation and strength training. Forty-nine studies were included: 19 acute, six glycogen depletion, seven short-term and 17 long-term studies. Participants were strength trainees or athletes (39 studies), recreationally active (six studies) or untrained (four studies). Acutely, higher carbohydrate intake did not improve performance in 13 studies and enhanced performance in six studies, primarily in those with fasted control groups and workouts with over 10 sets per muscle group. One study found that a carbohydrate meal improved performance compared to water but not in comparison to a sensory-matched placebo breakfast. There was no evidence of a dose-response effect. After glycogen depletion, carbohydrate supplementation improved performance in three studies compared to placebo, in particular during bi-daily workouts, but not in research with isocaloric controls. None of the seven short-term studies found beneficial effects of carbohydrate manipulation. Longer-term changes in performance were not influenced by carbohydrate intake in 15 studies; one study favored the higher- and one the lower-carbohydrate condition. Carbohydrate intake per se is unlikely to strength training performance in a fed state in workouts consisting of up to 10 sets per muscle group. Performance during higher volumes may benefit from carbohydrates, but more studies with isocaloric control groups, sensory-matched placebos and locally measured glycogen depletion are needed.publishedVersio

    Where Does Blood Flow Restriction Fit in the Toolbox of Athletic Development? A Narrative Review of the Proposed Mechanisms and Potential Applications

    Get PDF
    Blood flow-restricted exercise is currently used as a low-intensity time-efficient approach to reap many of the benefits of typical high-intensity training. Evidence continues to lend support to the notion that even highly trained individuals, such as athletes, still benefit from this mode of training. Both resistance and endurance exercise may be combined with blood flow restriction to provide a spectrum of adaptations in skeletal muscle, spanning from myofibrillar to mitochondrial adjustments. Such diverse adaptations would benefit both muscular strength and endurance qualities concurrently, which are demanded in athletic performance, most notably in team sports. Moreover, recent work indicates that when traditional high-load resistance training is supplemented with low-load, blood flow-restricted exercise, either in the same session or as a separate training block in a periodised programme, a synergistic and complementary effect on training adaptations may occur. Transient reductions in mechanical loading of tissues afforded by low-load, blood flow-restricted exercise may also serve a purpose during de-loading, tapering or rehabilitation of musculoskeletal injury. This narrative review aims to expand on the current scientific and practical understanding of how blood flow restriction methods may be applied by coaches and practitioners to enhance current athletic development models.publishedVersionPaid open acces

    In-season autoregulation of one weekly strength training session maintains physical and external load match performance in professional male football players

    Get PDF
    The aim of this study was to compare the effects of autoregulating strength training volume based on an objective (external load match performance) versus a subjective (self-selected) method in professional male football players. Sixteen players completed a 10-week strength training programme where the number of sets was regulated based on football match high-intensity running distance (HIR >19.8 km/h, AUTO, n = 7), or self-selected (SELF, n = 9). In addition to traditional physical performance assessments (30-m sprint, countermovement jump, leg-strength, and body composition), external load match performance was assessed with five matches in the beginning and in the end of the study period. Both groups performed ~ 1 weekly bout of ~ 6 sets in leg extensor exercises during the 10-week period, and maintained physical performance during the competitive season, with no group differences detected after the training period. Non-overlap of all pairs (NAP) analysis showed weak-to-moderate effects in external load match performance from before to after the study period, suggesting that players maintained or improved their performance. In conclusion, no group differences were observed, suggesting that both external load autoregulated and self-selected, low-volume in-season strength training maintained physical, and external load match performance in professional male football players.publishedVersio

    Association Between Physical Performance Tests and External Load During Scrimmages in Highly Trained Youth Ice Hockey Players

    Get PDF
    Author's accepted manuscriptAccepted author manuscript version reprinted, by permission, from International Journal of Sports Physiology and Performance (IJSPP), 2023, 18(1): 47-54, https://doi.org/10.1123/ijspp.2022-0225. © Human Kinetics, Inc.Purpose: To investigate the relationship between physical performance tests and on-ice external load from simulated games (scrimmages) in ice hockey. Methods: A total of 14 players completed a physical performance test battery consisting of 30-m sprint test—run and 30-m sprint test—skate (including 10-m split times and maximum speed), countermovement jump, standing long jump, bench press, pull-ups, and trap bar deadlift and participated in 4 scrimmages. External load variables from scrimmages included total distance; peak speed; slow ( 24.0 km/h) speed skating distance; number of sprints; PlayerLoad™; number of high-intensity events (> 2.5 m/s); accelerations; decelerations; and changes of direction. Bayesian pairwise correlation analyses were performed to assess the relationship between physical performance tests and external load performance variables. Results: The results showed strong evidence (Bayes factor > 10) for associations between pull-ups and high-intensity events (τ = .61) and between maximum speed skate and peak speed (τ = .55). There was moderate evidence (Bayes factor >3 to <10) for 6 associations: both maximum speed skate (τ = .44) and countermovement jump (τ = .44) with sprint speed skating distance, countermovement jump with number of sprints (τ = .46), pull-ups with changes of direction (τ = .50), trap bar with peak speed (τ = .45), and body mass with total distance (τ = .49). Conclusion: This study found physical performance tests to be associated with some of the external load variables from scrimmages. Nevertheless, the majority of correlations did not display meaningful associations, possibly being influenced by the selection of physical performance tests.acceptedVersio

    Should we individualize training based on force-velocity profiling to improve physical performance in athletes?

    Get PDF
    The present study aimed to examine the effectiveness of an individualized training program based on force-velocity (FV) profiling on jumping, sprinting, strength, and power in athletes. Forty national level team sport athletes (20 ± 4years, 83 ± 13 kg) from ice-hockey, handball, and soccer completed a 10-week training intervention. A theoretical optimal squat jump (SJ)-FV-profile was calculated from SJ with five different loads (0, 20, 40, 60, and 80 kg). Based on their initial FV-profile, athletes were randomized to train toward, away, or irrespective (balanced training) of their initial theoretical optimal FV-profile. The training content was matched between groups in terms of set x repetitions but varied in relative loading to target the different aspects of the FV-profile. The athletes performed 10 and 30 m sprints, SJ and countermovement jump (CMJ), 1 repetition maximum (1RM) squat, and a leg-press power test before and after the intervention. There were no significant group differences for any of the performance measures. Trivial to small changes in 1RM squat (2.9%, 4.6%, and 6.5%), 10 m sprint time (1.0%, −0.9%, and −1.7%), 30 m sprint time (0.9%, −0.6%, and −0.4%), CMJ height (4.3%, 3.1%, and 5.7%), SJ height (4.8%, 3.7%, and 5.7%), and leg-press power (6.7%, 4.2%, and 2.9%) were observed in the groups training toward, away, or irrespective of their initial theoretical optimal FV-profile, respectively. Changes toward the optimal SJ-FV-profile were negatively correlated with changes in SJ height (r = −0.49, p < 0.001). Changes in SJ-power were positively related to changes in SJ-height (r = 0.88, p < 0.001) and CMJ-height (r = 0.32, p = 0.044), but unrelated to changes in 10 m (r = −0.02, p = 0.921) and 30 m sprint time (r = −0.01, p = 0.974). The results from this study do not support the efficacy of individualized training based on SJ-FV profiling.publishedVersio

    Caffeine increases strength and power performance in resistance‐trained females during early follicular phase

    Get PDF
    The effects of 4 mg·kg‐1caffeine ingestion on strength and power were investigated for the first time, in resistance‐trained females during the early follicular phase utilizing a randomized, double‐blind, placebo‐controlled, crossover design. Fifteen females (29.8±4.0 years, 63.8±5.5 kg [mean±SD]) ingested caffeine or placebo 60 minutes before completing a test battery separated by 72 hours. One‐repetition maximum (1RM), repetitions to failure (RTF) at 60% of 1RM, were assessed in the squat and bench press. Maximal voluntary contraction torque (MVC) and rate of force development (RFD) were measured during isometric knee‐extensions, while utilizing interpolated twitch technique to measure voluntary muscle activation. Maximal power and jump height were assessed during countermovement jumps (CMJ). Caffeine metabolites were measured in plasma. Adverse effects were registered after each trial. Caffeine significantly improved squat (4.5±1.9%, effect size [ES]: 0.25) and bench press 1RM (3.3±1.4%, ES: 0.20), and squat (15.9±17.9%, ES: 0.31) and bench press RTF (9.8±13.6%, ES: 0.31), compared to placebo. MVC torque (4.6±7.3%, ES: 0.26), CMJ height (7.6±4.0%, ES: 0.50) and power (3.8±2.2%, ES: 0.24) were also significantly increased with caffeine. There were no differences in RFD or muscle activation. Plasma [caffeine] was significantly increased throughout the protocol and mild side‐effects of caffeine were experienced by only 3 participants. This study demonstrated that 4 mg·kg‐1 caffeine ingestion enhanced maximal strength, power and muscular endurance in resistance‐trained and caffeine‐habituated females during the early follicular phase, with few adverse effects. Female strength and power athletes may consider using this dose pre‐competition and ‐training as an effective ergogenic aid
    corecore