188 research outputs found

    Description of the nuclear octupole and quadrupole deformation

    Full text link
    A parametrization of octupole plus quadrupole deformation, in terms of intrinsic variables defined in the rest frame of the overall tensor of inertia, is presented and discussed. The model is valid for situations close to the axial symmetry, but non axial deformation parameters are not frozen to zero. The properties of the octupole excitations in the deformed Thorium isotopes Th-226, Th-228 are interpreted in the frame of this model. A tentative interpretation of octupole oscillations in nuclei close to the X(5) symmetry, in terms of an exactly separable potential, is also discussed.Comment: 15 pages, 3 figures. XXIV International Workshop on Nuclear Theory, Rila, Bulgaria, 20-25 June, 2005. Printing errors correcte

    Description of nuclear octupole and quadrupole deformation close to the axial symmetry: Octupole vibrations in the X(5) nuclei 150Nd and 152Sm

    Full text link
    The model, introduced in a previous paper, for the description of the octupole and quadrupole degrees of freedom in conditions close to the axial symmetry, is used to describe the negative-parity band based on the first octupole vibrational state in nuclei close to the critical point of the U(5) to SU(3) phase transition. The situation of 150Nd and 152Sm is discussed in detail. The positive parity levels of these nuclei, and also the in-band E2 transitions, are reasonably accounted for by the X(5) model. With simple assumptions on the nature of the octupole vibrations, it is possible to describe, with comparable accuracy, also the negative parity sector, without changing the description of the positive-parity part.Comment: 8 pages, 5 figure

    Description of nuclear octupole and quadrupole deformation close to the axial symmetry and phase transitions in the octupole mode

    Full text link
    The dynamics of nuclear collective motion is investigated in the case of reflection-asymmetric shapes. The model is based on a new parameterization of the octupole and quadrupole degrees of freedom, valid for nuclei close to the axial symmetry. Amplitudes of oscillation in other degrees of freedom different from the axial ones are assumed to be small, but not frozen to zero. The case of nuclei which already possess a permanent quadrupole deformation is discussed in some more detail and a simple solution is obtained at the critical point of the phase transition between harmonic octupole oscillation and a permanent asymmetric shape. The results are compared with experimental data of the Thorium isotopic chain. The isotope Th-226 is found to be close to the critical point.Comment: 17 pages, 5 figures, 8 tables; 3 new references added, misprints correcte

    Description of nuclear octupole and quadrupole deformation close to the axial symmetry: Critical-point behavior of 224Ra and 224Th

    Full text link
    The model, introduced in a previous paper, for the description of the octupole and quadrupole degrees of freedom in conditions close to the axial symmetry, is applied to situations of shape phase transitions where the quadrupole amplitude can reach zero. The transitional nuclei 224,226Ra and 224Th are discussed in the frame of this model. Their level schemes can be reasonably accounted for assuming a square-well potential in two dimensions. Electromagnetic transition amplitudes are also evaluated and compared with existing experimental data.Comment: 11 pages, 9 figure

    Transition probabilities in the X(5) candidate 122^{122}Ba

    Full text link
    To investigate the possible X(5) character of 122Ba, suggested by the ground state band energy pattern, the lifetimes of the lowest yrast states of 122Ba have been measured, via the Recoil Distance Doppler-Shift method. The relevant levels have been populated by using the 108Cd(16O,2n)122Ba and the 112Sn(13C,3n)122Ba reactions. The B(E2) values deduced in the present work are compared to the predictions of the X(5) model and to calculations performed in the framework of the IBA-1 and IBA-2 models

    πNN\pi NN coupling determined beyond the chiral limit

    Get PDF
    Within the conventional QCD sum rules, we calculate the πNN\pi NN coupling constant, gπNg_{\pi N}, beyond the chiral limit using two-point correlation function with a pion. We consider the Dirac structure, iγ5i\gamma_5, at mπ2m_\pi^2 order, which has clear dependence on the PS and PV coupling schemes for the pion-nucleon interactions. For a consistent treatment of the sum rule, we include the linear terms in quark mass as they constitute the same chiral order as mπ2m_\pi^2. Using the PS coupling scheme for the pion-nucleon interaction, we obtain gπN=13.3±1.2g_{\pi N}=13.3\pm 1.2, which is very close to the empirical πNN\pi NN coupling. This demonstrates that going beyond the chiral limit is crucial in determining the coupling and the pseudoscalar coupling scheme is preferable from the QCD point of view.Comment: 8 pages, revtex, some errors are corrected, substantially revise

    Transition rates and nuclear structure changes in mirror nuclei 47Cr and 47V

    Full text link
    Lifetime measurements in the mirror nuclei 47Cr and 47V were performed by means of the Doppler-shift attenuation method using the multidetector array EUROBALL, in conjunction with the ancillary detectors ISIS and the Neutron Wall. The determined transition strengths in the yrast cascades are well described by full pf shell model calculations.Comment: Latex2e, 11 pages, 3 figure

    Spectroscopy of 98Ru

    Get PDF
    The nucleus 98 Ru has been investigated by means of Îł - Îł coincidence, Îł - Îł angular correlation and K-internal conversion coefficient measurements. The results have led to spin-parity assignment to several levels and to the determination of E 2/ M 1 mixing ratios for the most intense transitions
    • …
    corecore