62 research outputs found

    Situation Awareness of Construction Workers to boost Productivity of Construction Projects

    Get PDF
    Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with 3He minority. The determination of ion temperature gradient (ITG) threshold and ion stiffness offers unique opportunities for validation of the well-established theory of ITG driven modes. Ion stiffness is observed to decrease strongly in the presence of toroidal rotation when the magnetic shear is sufficiently low. This effect is dominant with respect to the well-known ω E×B threshold up-shift and plays a major role in enhancing core confinement in hybrid regimes and ion internal transport barriers. The effects of T e/T i and s/q on ion threshold are found rather weak in the domain explored. Quasi-linear fluid/gyro-fluid and linear/non-linear gyro-kinetic simulations have been carried out. Whilst threshold predictions show good match with experimental observations, some significant discrepancies are found on the stiffness behaviour. © 2011 IOP Publishing Ltd

    A LOWER HYBRID CURRENT DRIVE SYSTEM FOR ITER

    No full text
    A 20 MW/5 GHz lower hybrid current drive (LHCD) system was initially due to be commissioned and used for the second mission of ITER, i.e. the Q = 5 steady state target. Though not part of the currently planned procurement phase, it is now under consideration for an earlier delivery. In this paper, both physics and technology conceptual designs are reviewed. Furthermore, an appropriate work plan is also developed. This work plan for design, R&D, procurement and installation of a 20 MW LHCD system on ITER follows the ITER Scientific and Technical Advisory Committee (STAC) T13-05 task instructions. It gives more details on the various scientific and technical implications of the system, without presuming on any work or procurement sharing amongst the possible ITER partners(b). This document does not commit the Institutions or Domestic Agencies of the various authors in that respect.X1185sciescopu

    Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    No full text
    \u3cp\u3eIntegrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.\u3c/p\u3

    Energetic ion losses 'channeling' mechanism and strategy for mitigation

    No full text
    Results from two different sets of JET experiments are presented. In experiments in which toroidicity-induced Alfven eigenmodes (TAEs) localized at different radial locations had the same frequencies and toroidal mode numbers, the occurrence of enhanced losses after the excitation of TAEs in the core of the plasma was observed. On the contrary, enhanced losses were not observed if the TAEs localized at different radial locations had different frequencies and toroidal mode numbers. Numerical modeling indicates that, in the first set of experiments, the enhanced losses were caused by a combined effect of the TAEs localized at different radial locations. The TAEs localized in the plasma core transported energetic ions from the core to outer regions of the plasma. Then, the TAEs localized in outer regions of the plasma interacted with these ions just transported by the core-localized TAEs causing a further radial displacement of the ions to the plasma edge. This process eventually ends up causing the loss of the resonant ions. In the second set of experiments, it was found that TAEs localized in the plasma core and in outer regions did not interact with the same ions and so no enhanced losses were measured. Sheared profiles of the safety factor combined with flat mass density profiles lead to larger differences on the frequencies of the TAEs localized at different radial locations, eventually avoiding loss of energetic ions through the described mechanism

    Validation of the ICRF antenna coupling code RAPLICASOL against TOPICA and experiments

    No full text
    In this paper we validate the finite element code RAPLICASOL, which models radiofrequency wave propagation in edge plasmas near ICRF antennas, against calculations with the TOPICA code. We compare the output of both codes for the ASDEX Upgrade 2-strap antenna, and for a 4-strap WEST-like antenna. Although RAPLICASOL requires considerably fewer computational resources than TOPICA, we find that the predicted quantities of experimental interest (including reflection coefficients, coupling resistances, S- and Z-matrix entries, optimal matching settings, and even radiofrequency electric fields) are in good agreement provided we are careful to use the same geometry in both codes
    corecore