29 research outputs found

    Influence of process parameters on the morphology of spray-dried BaCl2 powders

    Get PDF
    Spray‐drying is an effective method for producing powder aggregates with controlled size and morphology. Here, we report on a systematic study aimed at determining how spray‐drying parameters such as nozzle temperature, gas flow, salt concentration and solution feed rate, influence the characteristics of BaCl2 granules prepared from aqueous solutions. We correlate the granule characteristics to these conditions through the use of processing maps and modeling. It is found that well‐dispersed, high density and spherical aggregates, which are favorable for subsequent powder compaction and sintering, can be obtained within a limited range of processing conditions

    Advances in design of high-performance heterostructured scintillators for time-of-flight positron emission tomography

    Get PDF
    Core to advancing time-of-flight positron emission tomography (ToF-PET) toward a less invasive, more flexible procedure with a higher diagnostic power is the development of enhanced radiation detector materials. One promising avenue is the development of heterostructured scintillators where multiple materials work in synergy to exceed the performance of each individual component. Applied to ToF-PET detectors, one component contributes predominantly to the absorption of gamma rays and the other to the creation of ultra-fast photons. Whilst other authors have proposed various concepts, heterostructured scintillators are still in their infancy and scientifically guiding their development remains a challenge. Toward this aim and based on simulation and modeling developments, heterostructure properties are directly linked to ToF-PET performance. This is made possible by redefining the notions of detector photo-peak efficiency and timing response, as defined for monolithic detectors, in the context of heterostructured scintillators. Their overall potential is then discussed as a function of the materials and design used. This provides a quantitative framework to rapidly and efficiently support the advancement of heterostructured detectors for ToF-PET technology.Engineering and Physical Sciences Research Council (EPSRC): EP/S013652/

    Scintillation of tantalate compounds

    Get PDF
    A screening of 63 metal-tantalate-oxides was conducted in search of heavy scintillator materials operating at ambient temperature. While tantalates are known to have slow scintillation decay times, the high atomic number of tantalum (73) provides good stopping power for gamma rays. Screened samples were synthesized by solid state reactions. Scintillation properties of these materials were evaluated by X-ray diffraction, X-ray excited luminescence and pulsed X-ray luminescence. Of the 63 synthesized tantalates examined only 12 had luminosity values greater than 1000 ph/MeV at room temperature. From these, ScTaO4, YTa3O9, and Zn3Ta2O8 have greater than 40% of their emission in the first μs. The brightest and fastest compound of those tested was Zn3Ta2O8 with an estimated luminosity of 26,000 ph/MeV and a main decay time of 600 ns from its crystalline powder. Further attention is given to Zn3Ta2O8 and Mg4Ta2O9 scintillation properties, demonstrating their potential for scintillation applications

    Fast emitting nanocomposites for high-resolution ToF-PET imaging based on multicomponent scintillators

    Full text link
    Time-of-Flight Positron Emission Tomography is a medical imaging technique, based on the detection of two back-to-back {\gamma}-photons generated from radiotracers injected in the body. Its limit is the ability of employed scintillation detectors to discriminate in time the arrival of {\gamma}-pairs, i.e. the coincidence time resolution (CTR). A CTR < 50 ps that would enable fast imaging with ultralow radiotracer dose. Monolithic materials do not have simultaneously the required high light output and fast emission characteristics, thus the concept of scintillating heterostructure is proposed, where the device is made of a dense scintillator coupled to a fast-emitting light material. Here we present a composite polymeric scintillator, whose density has been increased upon addition of hafnium oxide nanoparticles. This enhanced by +300% its scintillation yield, surpassing commercial plastic scintillators. The nanocomposite is coupled to bismuth germanate oxide (BGO) realizing a multilayer scintillator. We observed the energy sharing between its components, which activate the nanocomposite fast emission enabling a net CTR improvement of 25% with respect to monolithic BGO. These results demonstrate that a controlled loading with dense nanomaterials is an excellent strategy to enhance the performance of polymeric scintillators for their use in advanced radiation detection and imaging technologies

    <i>In situ</i> diagnostics of the crystal-growth process through neutron imaging:application to scintillators

    Get PDF
    Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed (e.g. while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole) is studied in situ during the melting and solidification processes with a temporal resolution of 5-7 s. The strong tendency of the Eu dopant to segregate during the solidification process is observed in repeated cycles, with Eu forming clusters on multiple length scales (only for clusters larger than ∼50 µm, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change in concentration of one of the elements with a sufficient neutron attenuation cross section. Tomographic imaging of the BaBrCl:0.1%Eu sample reveals a strong correlation between crystal fractures and Eu-deficient clusters. The results of these experiments demonstrate the unique capabilities of neutron imaging for in situ diagnostics and the optimization of crystal-growth procedures

    Two-dimensional perovskite functionalized fiber-type heterostructured scintillators

    Get PDF
    A fiber-type heterostructured scintillator based on bismuth germanate (Bi4Ge3O12) functionalized with the 2D-perovskite butylammonium lead bromide ((BA)2PbBr4) has been fabricated, and its scintillation performance analyzed toward its use for fast timing applications such as time-of-flight Positron Emission Tomography. The pixel shows energy sharing between the matrix and filler component, confirming that the two components are in synergy

    Horizons of modern molecular dynamics simulation in digitalized solid freeform fabrication with advanced materials

    Get PDF
    Our ability to shape and finish a component by combined methods of fabrication including (but not limited to) subtractive, additive, and/or no theoretical mass-loss/addition during the fabrication is now popularly known as solid freeform fabrication (SFF). Fabrication of a telescope mirror is a typical example where grinding and polishing processes are first applied to shape the mirror, and thereafter, an optical coating is usually applied to enhance its optical performance. The area of nanomanufacturing cannot grow without a deep knowledge of the fundamentals of materials and consequently, the use of computer simulations is now becoming ubiquitous. This article is intended to highlight the most recent advances in the computation benefit specific to the area of precision SFF as these systems are traversing through the journey of digitalization and Industry-4.0. Specifically, this article demonstrates that the application of the latest materials modelling approaches, based on techniques such as molecular dynamics, are enabling breakthroughs in applied precision manufacturing techniques

    Progress in studying scintillator proportionality: Phenomenological model

    No full text
    corecore