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Abstract:  

Our ability to shape and finish a component by combined methods of fabrication including (but not 

limited to) subtractive, additive and/or no theoretical mass-loss/addition during the fabrication is now 

popularly known as solid freeform fabrication. Fabrication of a telescope mirror is a typical example 

where grinding and polishing processes are first applied to shape the mirror and thereafter an optical 

coating is usually applied to enhance its optical performance. The area of nanomanufacturing cannot 

grow without a deep knowledge of the fundamentals of materials and consequently, the use of computer 

simulations is becoming ubiquitous. This article is intended to introduce the most recent advances in 

the computation benefit specific to the area of solid freeform fabrication as these systems are traversing 

through the journey of digitalisation and Industry-4.0. Specifically, this article demonstrates that the 

application of the latest materials modelling approaches, based on techniques such as molecular 
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dynamics, are enabling breakthroughs in applied precision manufacturing techniques. 

Keywords: MD simulation; Solid freeform fabrication; additive manufacturing; digital manufacturing 

 

Acronyms: 

3DAP  3D atom probe   

AMBER Assisted Model Building with Energy Refinement 

ASIC  Application Specific Integrated Circuits 

BOP                Bond order potential 

CAT  Crystal Analysis tool 

CHARMM Chemistry at HARvard Macromolecular Mechanics  

CFD  Computation fluid dynamics 

CPU  Central processing unit 

 DXA  Dislocation extraction algorithm 

FEA  Finite element analysis 

FPGA  Field Programmable Gate Arrays 

GMR  Giant magneto-resistive 

GPU  Graphics processing unit 

HPC                High-performance computing  

LAMMPS Large scale atomic massively parallel simulation 

LJ  Lennard Jones  

MEB  Molecular beam epitaxy  

MD  Molecular dynamics simulation 

NAMD  Nanoscale molecular dynamics 

NEMD  Non-equilibrium molecular dynamics 

PME  Particle mesh Ewald 
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PoP  Package-on-package 

PPPM  Particle-Particle Particle-Mesh 

R2R  Roll to Roll fabrication 

SFF  Solid freeform fabrication 

SiP  System-in-package 

SoC  System on chip  

SIMD  Single instruction multiple data model 

vdW  van der Waals Forces 

 

1.0. The emergence of digitalisation in micro-manufacturing  

In-situ monitoring of microfabrication technologies has become crucial in the age of nanoscale 

digital manufacturing. While experimental efforts are still underway [1], the emergence of 

newer kinds of materials (auxetic materials, metamaterials, 2D materials, scintillating and 

doped materials in heterogenous ratios) that can predictably be modelled with the known 

physics of ab-initio methods, it is now a practice to simulate new material ahead of 

experimental synthesis to identify the incentives associated with scalable developments in the 

manufacturing of such materials. In this spirit, various simulation tools have emerged over the 

past decades, including advances in macroscopic combinatorial coupling schemes such as FEA 

and CFD [2] as well as methods like homogenisation in time [3, 4], Model reduction techniques 

[5], Movable cellular automaton [6], the Discrete element method [7] and coupling of FEM 

with MD simulation [8]. However, while these methods have solved the problem of the size 

scale, they have not succeeded in mitigating the problem of the time scale. For these reasons, 

molecular dynamics (MD) has continued to be the preferable tool over the last decade for the 

research community investigating nanoscale manufacturing.  

This main simulation tools used in the past to study various tribological problems including 
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micromanufacturing processes was benchmarked recently in a review article and shown in 

Figure 1 [9]. The bottom part of the graph takes us close to the fundamental physics domain 

while the upper part of figure 1 takes us closer to the macroscopic engineering world. An 

intermittent place is occupied here by the MD that leverages quantum mechanical calculations 

to model atomic interactions in the material.  

 

Figure 1: Time scale vs Length scale representation of various simulation methods applied to 

study a wide range of micromanufacturing and tribology problems, Reprinted with permission 

[9] 

 

In the past, it has been alluded to that MD intermittently permits direct observation of events 

occurring at the atomic level, especially at short timescales of a few femtoseconds that cannot 

be studied using traditional engineering simulation methods like FEA. Furthermore, one 

principal difference between FEA and MD is that the nodes and the distances between the nodes 

in MDS are not selected on an arbitrary basis but based on more fundamental units of the 

material, namely, the position of atoms as the nodes and inter-atomic distances as the distance 

between the nodes. Also, the shape and size of the crystal in MDS is dictated by the 
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crystallographic structure of the material and not arbitrarily, such as triangular or rectangular 

shapes as in FEA and therefore one expects MD to provide a bottom-up understanding of the 

process as opposed to the top-down understanding. With new developments described in this 

paper, it is possible to accurately model and simulate with MD to gain a solid understanding of 

discrete processes such as dislocation mediated plasticity and Burgers Vectors responsible for 

slip on a particular crystal plane [10] and/or tribochemistry involved during the process.  

MD is an iterative application of Newtonian mechanics to an ensemble of atoms and molecules. 

Each iteration consists of two phases, force computation and motion integration. The forces 

may include non-bonded (e.g., Lennard-Jones or Coulomb) and bonded terms, and are related 

to motion through: 𝐹𝑖𝑥 = − 𝑑𝑉𝑑𝑥𝑖 = 𝑚𝑖 ∙ 𝑎𝑖𝑥 = 𝑚𝑖 ∙ 𝑑2𝑥𝑖𝑑𝑡2         (1) 

where xi and aix are the x- component of coordinate and acceleration of atom i, Fix is the x-

component of the interaction force on i, mi is i’s mass of the ith atom, and V is the potential 

energy function. In MDS, these equations are integrated by numerical techniques for extremely 

short time periods (~100 nanoseconds); and equilibrium statistical averages are computed as 

temporal averages over the observation time. To render atomistic simulation studies practical, 

an interatomic potential function is necessary. During MDS, the interatomic bonding forces 

(both attractive and repulsive) are defined by an appropriate empirical potential-energy 

function such that:  

Ftotal = Fbond +Fangle +Ftorsion +Fnon−bonded        (2) 

The bonded terms in the above equation affect only the neighbouring atoms, and their 

computational effort scales with the number of particles N being simulated, i.e., ~ O(N).  

On the other hand, the amount of computational effort needed to calculate non-bonded 

interactions scales as O(N2), which represents a significant computational cost. When 

parallelised, the long-range force can dominate further, especially for large computer systems 
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operating on small to medium-sized problems [11]. To reduce the computational costs 

associated with the calculation of non-bonded interactions, several schemes have been adopted, 

such as the introduction of cut-offs, where the non-bonded interactions are not calculated when 

the distance between two atoms exceeds the cut-off distance [12]. Van der Waals (vdW) or 

Lenard-Jones (LJ) non-bonded interactions are short-range in nature (for LJ these typically 

contain an r-6 term) and therefore can be approximated accurately using a distance cut-off to 

reduce the computational effort required from the full O(N2) computational complexity. 

Whereas coulombic interactions are long-range in nature (these contain an r-1 term) and cannot 

be accurately approximated using a distance cut-off scheme without corrections. Schemes for 

calculating coulombic interactions having lower computational complexity than O(N2) have 

been developed, such as Particle Mesh Ewald (PME) (N log(N)) [13] and Particle-Particle 

Particle-Mesh (PPPM) [14] (N log (N)0.5). The most widely used method for calculating fast 

electrostatic interactions is the Ewald method, which divides the electrostatic interactions into 

two parts. The first decays rapidly with distance to a specified cut-off and is a direct space sum, 

the second decays slowly but can be expressed efficiently by taking the fast Fourier transform 

of the charge distribution on a regular mesh. A detailed comparison of the Ewald and PPPM 

methods indicates that PPPM is both easier to implement and faster than the other methods 

[15]. 

2. Latest advances in accelerated molecular dynamics   

Numerous approaches have been used to accelerate classical MD simulations with different 

hardware technologies as described below: 

2.1. Parallel computing  

Parallel MD algorithms typically partition the simulation domain using spatial decomposition 

techniques (Figure 2). Each subdomain is assigned to a different processor with each processor 

sharing and storing information about “ghost” atoms in neighbouring domains which are within 
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the non-bonded cut-off of that processor’s subdomain. Thus, the computation on each processor 

is performed mainly on data within the assigned subdomain and therefore local memory, 

minimizing the performance overhead associated with communicating information about the 

“ghost” atoms from neighbouring domains. 

 

Figure 2: Diagram depicting the spatial decomposition of a 2D domain across 4 processors 
that can be run in parallel. Note the “ghost” regions that are duplicated between each of the 4 
processors (red lines) where changes are updated between processors during the calculations 
using boundary communications. 
 

2.2. Graphics Processing Units (GPUs) 

As opposed to a traditional central processing unit (CPU), graphics processing unit (GPU) is 

an example of a massively parallel stream processing architecture which uses the single 

instruction multiple data model (SIMD) (Figure 3).  



8 

 

 
Figure 3: Diagram depicting the addition of two vectors A and B on (a) a scalar architecture (non-

vector pipelined) CPU architecture (b) a single instruction multiple data (SIMD) architecture (such as 

a GPU). Note that the operations on a SIMD architecture are performed in parallel as a single operation 

running on multiple CPUs whereas on the scalar architecture each or the operations are performed in 

sequence.  

 

A typical GPU contains thousands of very simple processing units. However, unlike CPUs, 

these are optimized for streaming numerical operations in “lock-step” and there is usually a 

large performance penalty for any conditional branching operation (such as an if, case or while 

statement). For efficient use of the GPU hardware, algorithms must be written to make the most 

of the inherent vectorization in the hardware. GPU cores typically have access to a small 

amount of cache memory and a global device memory which can be accessed by all GPU cores. 

As with CPUs accessing the cache memory lower latency is involved than when accessing the 

global device memory. When these factors are considered it is apparent that an in-depth 

understanding of the architecture of the GPU hardware is required to take advantage of the raw 

computation performance the hardware offers. The fine-grained parallelism of MD algorithms 

makes them an ideal candidate for implementation on GPUs. GPUs offer significant 

computational performance at the cost of increased programming complexity compared with 

CPUs. Presently, a variety of MD codes takes advantage of GPU acceleration, for example, 

NAMD [16], LAMMPS [17], AMBER [18] and CHARMM [19]. 

 



9 

 

2.3. Field Programmable Gate Arrays (FPGA) 

A Field Programmable Gate Arrays (FPGA) is an integrated circuit designed to be configured 

by a customer or a designer for customised manufacturing. As such, they allow the hardware 

to be reconfigured to meet user requirements. Most FPGA based approaches to accelerating 

molecular dynamics codes use multiple custom pipelines per CPU core to accelerate the 

calculation of the non-bonded interaction components of the force field. For example, one such 

design used 4 non-bonded interaction pipelines per CPU to accelerate a version of LAMMPS. 

Speedups of up to 15x have been achieved with respect to CPU based calculations. 

Unfortunately, a specialised skill base is required to achieve these levels of performance when 

using FPGAs relative to approaches that use CPU’s and/or GPUs for accelerating molecular 

dynamics simulations. Typically, approaches that use OpenGL and the FPGA vendors’ tool 

chain to automatically design hardware within the FPGA do not result in high efficiency. A 

hardware design element is usually required. 

2.4. Application Specific Integrated Circuits (ASIC) 

An Application Specific Integrated Circuit (ASIC) is a circuit designed to perform a specific 

set of functions, which typically cannot be altered once the design is finalised. There is a long 

history of experimenting with ASICs as a means for accelerating molecular dynamics 

simulations [20, 21]. Very high levels of performance are possible using this approach. 

However, the development of such ASICs can be very protracted, expensive and is a very 

specialised pursuit. The more recent attempts that have taken this approach are in High 

performance supercomputers (HPC’s) such as MD-GRAPE4 [22] and Anton*. It is interesting 

to note that in both HPC’s, a system on chip (SoC) approach was taken, where accelerator(s), 

memory, general-purpose CPU and 6-way network were integrated onto a chip to reduce 

latency. For example, MD-GRAPE4 can calculate 51.2G interactions per SoC, whereas Anton 

 
* https://www.psc.edu/resources/computing/anton 

https://www.psc.edu/resources/computing/anton
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is reported to run MD simulations on proteins that are up to 2 orders of magnitude faster than 

that achieved using state-of-the-art CPUs. 

One advantage of using the SoC is that more specialised network topologies can be adopted. 

For example, in Anton there are 6x network links, allowing each processor to exchange data 

about changes to the neighbouring subdomains with a neighbouring processor using a 

dedicated bidirectional link of over 100Gbps bandwidth. Thus, the hardware network topology 

can very closely match that of the spatial decomposition used to parallelise the MD code. This 

is very difficult to achieve using commodity hardware.   

2.5. High-performance computing and gains expected in simulation runtime 

The use of high-performance computation or simply HPC has transcended the use of MD and 

many other simulation techniques. This has allowed scaling of the simulation length scales to 

meet the experimental lower limits and has brought the run time of simulation much faster than 

individual workstations. For example, currently, significant work is being undertaken at the 

Lawrence Livermore National laboratory in conducting large scale atomic simulations with the 

integrated usage of the "Dislocation extraction algorithm" (DXA) and Crystal analysis tool 

(CAT) [23] for studying metal plasticity, crystal defects, dislocation lines and their Burgers 

Vectors from the MDS output data [24]. In Europe, the most common way of requesting the 

use of a HPC for MD is via the PRACE project call [25]. PRACE is an international non-profit 

entity that bridges 26 member states to rapidly accelerate scientific discoveries by offering 

access to world-leading supercomputers from various European countries such as ARCHER 

(UK), Hazel Hen, SuperMuc and Juwels (Germany), Joliot (France), Marconi (Italy), 

MareNostrum (Spain) and Piz Daint (Switzerland). To efficiently use high-performance 

computing, it is very important to benchmark the results at an early stage to identify the most 

optimal number of processing threads or nodes for specific simulations. It is often the case that 

the performance obtained in a simulation on an HPC can only scale up efficiently up to a certain 
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number of CPU cores beyond which the communication overhead associated with message 

passing between cores becomes more time consuming than the numerical processing on each 

core. As an example, some data on certain machines and certain force fields (potential 

functions) benchmarked by LAMMPS developers [26]. As another example on scaling of a 

large range bond order potential function on the UK’s supercomputer ARCHER reveals that 

the optimal scaling of LAMMPS MD can be made up to about 100 nodes or 2400 cores 

(currently, ARCHER has 24 cores/node) where the performance scales linearly before 

degrading as shown in figure 4. However, when the same performance was tested on the 

Isambard HPC, it was found that the performance of long-range screened bond order potentials 

[27] (referred as the atomistica library) [28] scaled all the way upto 10,000 cores as opposed to 

the Tersoff potential where the performance degraded beyond 2000 Cores. This performance 

gain is an architecture-dependent feature, which is why every HPC needs to be benchmarked 

separately. What’s noticeable here is that the linear slope of ideal gain presented by the 

ARCHER HPC and Isambard HPC are different, which explains the power gain (strength) of 

each HPC. 
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Figure 4: Scaling performance of bond order potentials on two HPC’s (Note that ARCHER 
HPC (http://www.archer.ac.uk/) contains 24 cores/node whilst Isambard HPC contains 64 
cores/node (https://gw4.ac.uk/isambard/) 
 

Typically, for micromachining and other contact loading simulations, the velocity of the tool 

or the probe is an important consideration in deciding the time length of the simulation run. 

For instance, if one would use a velocity of 20 m/sec to achieve a length of cut of 2 nm with 

free travel of the tool of 0.5 nm while approaching the workpiece then it takes about 125 ps of 

simulation time as shown in table 1. Note that for a pair potential like the Morse potential this 

job can take as little as 3 to 4 hours but for a more complicated potential (such as Screening 

REBO), a similar calculation can take two orders of magnitude longer to calculate. 
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Table 1: Sample calculation for estimating the number of timesteps required for an MD run 

Speed of cutting 20 m/s = 0.02 nm/ps 

Total simulation time  (2+0.5 nm)/0.02 nm/ps = 125 ps 

Timestep for each calculation  2 fs = 0.002 ps 

Total run timesteps 125 ps/0.002 ps = 62,500 cycles 

 

3.0 Case studies of simulation applications in advanced nano-manufacturing areas 

3.1. Introduction to Solid freeform fabrication (SFF) 

The need to have denser, lightweight and faster electronic gadgets has resulted in the 

development of compact semiconductor products with advanced functions that incorporate 

devices into a thin package. These needs are met by system-in-package (SiP) products, which 

are competing in parallel with Package-on-Package (PoP) products, where multiple chips are 

stacked in a single package. The scaling down of these products to sub 10 nm wiring intervals 

poses extreme challenges in assessing manufacturing quality and device performance. This 

increasingly stringent manufacturing scenario requires tight control in the testing of 

semiconductor devices. Agile and low-cost methods for characterisation of electrical 

performance are sought by a multitude of electronic industries. The unprecedented accuracies 

sought in terms of depth control is to allow layer by layer removal of material (with ~1 nm 

depth control) and to perform simultaneous electrical device characterisation. Consequently, a 

vast range of microfabrication techniques, either standalone [29], sequential [30] or hybrid 

methods [31] are fast developing. Modern assembly line product manufacturing in the precision 

sector cannot rely on either subtractive (such as micromachining) or additive (laser processing) 

manufacturing alone. Thus, a new area in fabrication making combined use of additive 

manufacturing and/or subtractive manufacturing techniques is emerging which is referred to as 

“Solid freeform fabrication”. The simplest example of SFF is that of a microdrill used for 

precision hole making operations. A drill has a complex flute shape which is first finished by 
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micromachining (subtractive manufacturing) to achieve the right shape and then coated 

(additive manufacturing) to achieve longevity in its cutting performance. Consequently, as the 

products in modern engineering applications are reaching the utmost complexities in terms of 

precision, the manufacturing issues faced therein are realised to be far more complex than what 

is seen in micromanufacturing processes. A vast number of other similar examples exist, 

biomedical prosthetic implants (of CoCr, stainless steel or Ti6Al4V), for instance, are usually 

ground and polished and subsequently coated with materials like hydroxyapatite (HA) or a 

telescopic mirror is usually ground and polished to achieve tight form before being subjected 

to an additive optical coating.   

A more recent precision solid freeform fabrication technology called Roll-to-Roll fabrication 

(R2R) [32] as shown in Figure 5 (one of the large R2R platform developed at Cranfield 

University) is being increasingly used these days.  

 

Figure 5:  A manufacturing platform R2R built at Cranfield University to accommodate 1.6 m 

width production capacity  

 

Products that are produced with R2R include 1) Next generation displays (flexible or large-

scale), activated and animated wall coverings, 3D displays, intelligent packaging and 

innovative clothing; 2) Pharmaceutical technologies; 3) Plastic electronics supporting a range 

Precision machined copper drum 

Micro-gratings fabricated on drum 

for embossing the polymer film 

Polymer film (~100 µm thick 

PET) to be embossed 

Granite bed 

Injection slot die for coating the 

polymer sheet that is cured by 

UV light after embossing 
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of low cost consumer products from food packaging to hand held devices; 4) Photovoltaics, 

energy and energy harvesting devices. Interruptions caused during large scale production of 

these high-value products may succumb to time/energy/materials losses if the process is not 

well-controlled. The intent of using R2R is to rapidly fabricate polymer films for a wide range 

of applications including, for example, television displays as shown in Figure 6.  

      

a) Optical design   (b) subtractive machining of drum      (c) R2R additive fabrication using 

drum 

           

(d) assembly of fabricated products  (e) consumer application  

Figure 6: An assembly of design to manufacturing precision processes (a-e) via R2R  

One can see that complex engineering products usually rely on an intelligent combination of a 

range of techniques comprising both subtractive and additive technologies. The scope of this 

review vastly covers technologies about advances in subtractive and additive technologies such 

as electrochemical micromachining, electrochemical spark micromachining, electrochemical 

microtexturing, diamond turn micromachining and various deposition-based manufacturing 
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processes. 

The photovoltaic industry leads renewable energy generation with annual production in year 

2018 reaching ~100 GW out of overall renewable power of 181 GW.  Currently, c-Si is the 

undisputed market leader with a share of over 90% capable of achieving grid parity in major 

sectors. The conventional additive/ subtractive manufacturing processes are the hallmark of c-

Si technology, but the major limitation is the energy intensive processing requiring large 

investment of few billions such as silicon extraction from raw materials and high-volume 

manufacturing to stay in competition for the affordable cost of electricity. However, the total 

share of all modern renewables is only 2% including solar, wind, biomass, geothermal and 

ocean power. Clearly, there is a need of efficient, durable, disruptive and affordable PV 

technologies involving non-toxic and abundant materials which can be easily processed at low 

capital investment. Mature inorganic thin film technologies viz. Cadmium Telluride (CdTe), 

and copper indium diselenide (CuInGaSe2) or CIGS solar cells are two major commercial 

successes. CIGS solar cells can be processed on rigid (glass) and flexible substrate (metal or 

polymer foils) with great potential to compete with c-Si technology, using R2R processing with 

proper thermal management as shown in figure 7. 

 

Figure 7: A schematic for R2R deposition of CIGS solar cell on metal or polymer foil through 
various stages of back contact: Molybdenum deposition by sputtering, absorber CIGS using 
effusion cells of Cu, In and Ga metals in selenium environment, CdS buffer layer using PVD/ 
Chemical Bath Deposition and front contact transparent conducting oxide ZnO: Al 
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The process shown in figure 7 when implemented on R2R suffers from manufacturing 

challenges of processing at 450 °C to 550 °C on a roll, thus the turn-key process solution does 

not exist at large scale volume production on flexible foils.  

Figure 8 shows a photograph of an in-line pilot system designed and developed for high 

performance CIGS solar cells over the 30 cm × 30 cm area on glass substrates jointly developed 

by London South Bank University and Scientific Vacuum Systems Ltd. (SVS). 

 

Figure 8: A photograph showing an in-line pilot system for high performance CIGS solar cells 
through sequential layer deposition using a robotic arm without breaking vacuum. 
 

The processed solar cells of large areas over 30 cm × 30 cm can be converted into a module 

using a combined additive process of deposition of layers and subtractive processes of using 

laser scribing process in sequential steps to form a mini-module with a number of series 

connected cells as shown below in figure 9. 

 
(a) 
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Absorber 

Front Contact 

Second (Absorber/ Buffer) Scribe    

Third (Front contact) Scribe 

 

Glass/ Polymer 

CIGS 

ZnO:Al 

First Mo back contact Scribe    

Buffer layer CdS 

Mo 
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(b) 

Figure 9: (a) A schematic of a monolithic module design for CIGS solar cells in series 
connections using sequential laser scribing steps as shown above and (b) photograph of a CIGS 
minimodule representing a series connection of eight CIGS solar cell strips. Reprinted with 
permission [33] 

 

Besides these, new generation disruptive Organic Solar Cells are the candidates, which are 

showing some great promise recently, particularly the hybrid (organic/ inorganic) Perovskite 

solar cells have achieved unprecedented energy conversion efficiencies from ~4% to ~25%, 

within a decade but suffer from stability issues to guarantee the life time of the module for > 

20 years. Efforts are underway to further enhance the performance using tandem solar cell 

combination in an attempt to achieve conversion efficiencies over 30%. Nevertheless, Organic 

Solar Cells have recently made an excellent jump in conversion efficiency numbers reaching 

around the 18% mark, which makes it a near commercial possibility with low upfront cost 

(CAPEX). However, the issues of long-term stability still remain a challenge as the active 

layers undergo degradation under atmospheric oxygen and moisture, which will require 

engineering challenges to be overcome such as price and durability of sealing materials or 

strategies for required successful commercialisation of the technology.  

Figure 10 below represents a multijunction (or tandem) organic solar cell with a multiple stack 
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of three absorber materials with blue absorber on top, green in the middle and red as the bottom 

cell, all connected in series in a 2-terminal monolithic configuration. 

 

Figure 10: A 14-layer tandem stack (upper left) along with structural formulae and names for 
the different materials involved (top right). The outline of the printed web is shown (middle) 
along with an actual photograph of a module (lower right). In the close-up photograph, the 
differently coloured active materials (red colour from MH301, green colour from MH306 and 
blue colour from PEDOT: PSS) are seen representing the wide band gap and low band gap 
semiconductor junctions and the hole transport layer. Reprinted with permission [34] 
 

3.1.1. Simulation application in advance subtractive manufacturing processes 

The need to adopt simulations in the study of subtractive (as well as additive) 

micromanufacturing processes stems from the complex interfacial interaction between the tool 

and the workpiece. A schematic representation of this complex interaction behaviour - taking 
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place at an interface or in its immediate vicinity comprising of mechanical (solid and fluid), 

thermal, electro-magnetic, metallurgical, quantum and other effects is shown in figure 11.  

 

Figure 11: Schematic representation of the non-linear multi-functional nature of physical, 
chemical and mechanical interactions at the interface of two moving asperities commonly seen 
during a contact loading condition in presence of environmental effects, Reprinted with 
permission [9] 
 

Traditionally, MD simulation of micromachining or other contact loading processes (such as 

nanoindentation) assumes an indenter to be a smooth, rigid and otherwise inert body 

impenetrable by other bodies, particularly because the focus of the investigation remains on 

the deformation of the substrate (workpiece) rather than the cutting tool. This assumption is 

widespread in the atomistic simulation studies of nanoindentation [35, 36] as well as 

nanometric cutting or nanoscratching [37, 38]. This assumption of having a rigid indenter in 

MD has been implemented by following one of the three cases: (a) assuming a rigid diamond 

indenter (carbon atoms), (b) assuming a rigid indenter comprising of the atoms of the same 

material of the substrate and (c) assuming an imaginary spherical rigid repulsive indenter 

described by a force of magnitude F(r) = -K(r-R)2 (r < R) where K is the force constant and R 

is the radius of the indenter. An attempt was recently made for the first time to compare these 

situations and it was found, interestingly, that even when an indenter is considered rigid, the 

near-surface phenomena such as cohesion or adhesion are always active, and this can trigger 

https://www.sciencedirect.com/topics/engineering/thermal-fluid
https://www.sciencedirect.com/topics/engineering/thermal-fluid
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changes in the way incipient plasticity is induced in the substrate [10]. The aforementioned 

study is a prime example highlighting the importance of material interaction and description of 

the tool atoms as much as that of the substrate even when a tool is considered rigid during the 

simulation. A lot of review articles are now available focussing on studying material-specific 

theories including metals [39, 40], ceramics like silicon carbide [38] as well as semiconductors 

like silicon [41, 42]. More recently advanced applications of MD have been made to explore 

elliptical vibration-assisted machining [43], laser ablation [44] and wire electrical discharge 

machining (EDM) [45]. 

Besides these, other historic reviews provide nice details on the art of micromachining both 

using experiments and MD simulations [46-48]. A more appropriate effort would be to perform 

MD simulation of the cutting process in the presence of water molecules (see Figure 12). The 

interatomic potential function now exists for doing such studies [49, 50]. 

 

Figure 12: MD simulation of the cutting process of silicon in the presence of H2O molecules 

 

3.1.2. MD simulation application in additive or deposition-based manufacturing processes 

There are various material deposition processes whereby our fundamental understanding of 

material interactions is lacking, and the use of simulations is increasingly growing. These 

include both vacuum-based and non-vacuum-based deposition processes for example, 
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sputtering, etching and implantation. Figure 13(a) shows an example of the simulated 

deposition process showing how clusters of atoms align themselves during a growth process. 

Simulations of melt or vapor-phase growth also provide a strong means of assessing the 

transferability and robustness of a potential function as it presents a variety of local 

configurations and complex combinations of the stoichiometry of compounds under various 

temperature and pressure conditions [51]. More recently, MD simulation has also been used to 

understand the influence of initial velocity and particle temperature during thermal spraying in 

the resulting splat formation (see figure 13b).  

 

(a) 
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(b) 

Figure 13: (a) MD simulation of deposition (growth) of titanium, silver and oxygen atoms on 
a titanium substrate (unpublished work by the authors), (b) splat formation during thermal 
spray deposition of copper on a polycrystalline copper substrate at various velocities. Reprinted 
with permission [52] 
 

The numerical deposition of Giant magnetoresistive (GMR) multilayers is a successful 

example. GMR multilayers are composed of two magnetic layers sandwiching a conductive 

copper layer. GMR read head sensors for hard disk drives have been the enabling technologies 

for laptops since late last century, but their initial development encountered a challenge: the 

conductive layer must be thin (~20 Å) and yet must have uniform thickness with sharp 

interfaces. Interestingly, high energy processes (e.g., sputtering) created better GMR devices 

than the more refined molecular beam epitaxy (MBE) processes. MD simulations indicated 

that high energy impacts can flatten the surface [53], but this also creates mixed interface 

especially when the second magnetic layer is grown on the soft copper layer, figure 14(b). This 

prediction was validated by the 3D atom probe (3DAP) experiment shown in figure 14(a) [54].  

MD was then used to demonstrate that when a low energy is used to deposit the first few atomic 

planes of a new layer to avoid mixing, a subsequent high energy can be used to grow the 
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remaining layer to flatten the surface [54] as shown in figure 14(c). This results in the 

development of biased target ion beam deposition (BTIBD) technology that uses modulated 

energy to improve GMR multilayers [55].  

 

Figure 14: Atomic configuration of GMR multilayers obtained from (a) 3D atom probe (2DAP) 

experiment, (b) constant energy MD simulation, and (c) modulated energy MD simulation. 

Reprinted with permission [54]  

On the same note, atomic scale growth of more complex semiconductor compound multilayers 

HgTe/CdSe/ZnS has been simulated using MD [56] (see figure 15a) and the deposition of 

plutonium on carbon was studied under varying conditions (figure 15b) [57]. These simulations 

revealed detailed formation mechanisms of various defects including misfit dislocations and 

stacking faults without any prior assumptions about these defects. They provide an effective 

means to guide experiments to reduce these defects.  
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(a) 

 

 
(b) 

Figure 15: (a) atomic scale growth of the HgTe/CdSe/ZnS multilayers obtained from molecular 
dynamics simulation where the pink shaded area highlights the initial ZnS substrate [56], and 
(b) deposition of plutonium on porous carbon substrate. Reprinted with permission  [57] 
 

As one good example, figures 16(a) and 16(b) show MD simulations of GaN growth in [0001] 

and [112̅0] directions respectively [58, 59] where the initial substrate, wurtzite, zinc-blende, 

and defective (i.e., undefinable) regions are shown in black, orange, blue, and white colours 

respectively. Almost defect-free structures can be grown in the [112̅0] growth direction (except 
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for the surface which is coloured white), but significant defects (including alteration of wurtzite 

and zinc-blende regions) exist in the [0001] growth direction. This is because the (112̅0) 

stacking is ABAB … which means that on a given plane of A, adatoms can only fall on B sites. 

Contrarily, the (0001) stacking is ABCABC … so that on a given plane A, adatoms can either 

occupy the correct sites B or the defective sites C, resulting in significant defects. This 

understanding can be used to control crystal structures through careful seeding. For instance, 

the (110) stacking of a zinc-blende structure is ABAB … so one can use a (110) zinc-blende 

seeding to force the film to grow into a zinc-blende structure.  

 

Figure 16: MD simulated atomic configurations of GaN files grown in (a) [0001] and (b) 

[112̅0] directions Reprinted with permission [58, 59]. 

Overall as additive manufacturing or coatings are predicted to be shaping the future of 

micromanufacturing to enable wealth of human life, the use of simulations to make these 

processes more deterministic is going to continue to play a crucial role. 

4.0. Ongoing developments in MD simulation 

4.1.1. Building complex crystal structures 

The starting point in doing MD simulation is to build a crystal lattice structure. For simple, 

building BCC, FCC, HCP and diamond cubic lattices is straightforward, but in practice, we 
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often face materials with rather complex crystal structures. Thanks to the Materials Genome 

Initiative, a database now exists which is significantly helpful in predicting certain crystal 

structures [60]. Besides this source, Big data analytic tools are also helping towards this drive 

and significant information is now available to help early-stage MD researchers in building the 

crystal lattice structure more easily [61-63]. An additional database exists [64] to predict phase 

properties of materials which clarifies phase change mechanisms such as those occurring 

during cutting of brittle materials. 

4.1.2. Development of potential energy functions or force field 

A potential function is the backbone of an MD simulation and the evolution of these over the 

years is reviewed in detail in various sources [29, 65, 66]. MRS Bulletin (Volume 37, Issue 5, 

2012) released a special issue titled “Three decades of many-body potentials in materials 

research”†. Various pioneers in the area of MD contributed to this issue to elucidate a long 

lineage on the development of potential functions (force fields) including Tersoff, embedded 

atomic method (EAM), bond order potential (BOP), reactive empirical bond order (REBO) and 

so on. It has already been highlighted that a potential function is usually just suitable for a 

specific material or to a specific process whether the material is based on carbon [67, 68], 

silicon [69, 70] or tungsten [71]. It is pertinent to note that a good evaluation and assessment 

of the potential function is required and ideally a potential should be carefully selected for 

simulations involving large strain deformations such as those seen during contact loading 

operations like nanoindentation or nanoscratching [10]. A more recently growing trend in the 

area of development of potential functions is the use of the machine learning approach [72], 

although several codes exist, such as atomicrex [73] that allow parametrising the potential 

function based on the wisdom of the researcher.  

 
† https://www.cambridge.org/core/journals/mrs-bulletin/issue/three-decades-of-manybody-potentials-in-
materials-research 
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Conclusions 

This review sheds light on the immense and imminent opportunities available for scholars to 

leverage high-performance computing simulation tools for the benefit of applied knowledge in 

various areas of engineering. The recently published papers reviewed here have shed light on 

the need for a deeper understanding of the linkages between materials science and applied 

commercial manufacturing. Areas related to solid freeform fabrication encompassing examples 

from additive manufacturing such as coating deposition, thermal spray as well as subtractive 

manufacturing including diamond machining and nanotribology have been largely benefited 

by the advance knowledge in the simulation field. This knowledge is becoming richer with the 

growing use of national computing resources and is enabling researchers to attain 

unprecedented unapproachable limits in manufacturing. Scalability in simulations is as big of 

a challenge as scalability in the manufacturing of precision components e.g., patterned surfaces 

in metals. However, some of these challenges can now be tackled with newly emerging 

dedicated computational hardware solutions and this is immensely benefitting the field of 

materials science-oriented precision manufacturing. 
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