87 research outputs found

    Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    Get PDF
    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells' interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered

    Liver transplantation is a preferable alternative to palliative therapy for selected patients with advanced hepatocellular carcinoma

    Get PDF
    Background: Patients with hepatocellular carcinoma (HCC) beyond the traditional criteria (advanced HCC) are typically offered palliation, which is associated with a 3-year survival rate lower than 30%. This study aimed to describe the outcomes for a subset of patients with advanced HCC who satisfied the Extended Toronto Criteria (ETC) and were listed for liver transplantation (LT). Materials & Methods: All patients listed in the Toronto liver transplant program with HCC beyond both the Milan and University of California, San Francisco criteria were included in this study. Data were extracted from the prospectively collected electronic database. All radiological images were reviewed by two independent radiologists. The primary endpoint was patient survival. Results: Between January 1999 and August 2014, 96 patients with advanced HCC were listed for LT, and 62 (65%) of these patients received bridging therapy while on the waiting list. Bridging therapy led to a significant reduction in tumor progression (p=0.02) and tumor burden (p <0.001). The majority of those listed underwent LT (n=69, 72%). Both tumor progression on waiting list (HR 4.973 [1.599 – 15.464], p=0.006) and peak AFP ≥400ng/ml (HR 4.604 [1.660 – 12.768], p=0.003) were independently associated with waiting list dropout. Post-LT HCC recurrence occurred in 35% (n=24). Among those with HCC recurrence, survival was significantly better for those who received curative treatment (p=0.004). The overall actuarial survival rates from the listing were 76% at 1 year, 56% at 3 years, and 47% at 5 years, and the corresponding rates from LT were 93%, 71%, and 66%. Conclusion: LT provides significantly better survival rates than palliation for patients with selected advanced HCC

    Optic-Vestibular Orientation to the Vertical

    Get PDF

    Analysis of effective interconnectivity of DegraPol-foams designed for negative pressure wound therapy

    Full text link
    Many wounds heal slowly and are difficult to manage. Therefore Negative Pressure Wound Therapy (NPWT) was developed where polymer foams are applied and a defined negative pressure removes wound fluid, reduces bacterial burden and increases the formation of granulation tissue. Although NPWT is used successfully, its mechanisms are not well understood. In particular, different NPWT dressings were never compared. Here a poly-ester urethane Degrapol® (DP)-foam was produced and compared with commercially available dressings (polyurethane-based and polyvinyl-alcohol-based) in terms of apparent pore sizes, swelling and effective interconnectivity of foam pores. DP-foams contain relatively small interconnected pores; PU-foams showed large pore size and interconnectivity; whereas PVA-foams displayed heterogeneous and poorly interconnected pores. PVA-foams swelled by 40 %, whereas DP- and PU-foams remained almost without swelling. Effective interconnectivity was investigated by submitting fluorescent beads of 3, 20 and 45 mm diameter through the foams. DP- and PU-foams removed 70-90 % of all beads within 4 h, independent of the bead diameter or bead pre-adsorption with serum albumin. For PVA-foams albumin pre-adsorbed beads circulated longer, where 20 % of 3 mm and 10 % of 20 mm diameter beads circulated after 96 h. The studies indicate that efficient bead perfusion does not only depend on pore size and swelling capacity, but effective interconnectivity might also depend on chemical composition of the foam itself. In addition due to the efficient sieve-effect of the foams uptake of wound components in vivo might occur only for short time suggesting other mechanisms being decisive for success of NPWT

    Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles

    Full text link
    Polycationic molecules form condensates with DNA and are used for gene therapy as an alternative to viral vectors. As clinical efficacy corresponds to cellular uptake, intracellular stability of the condensates, and bioavailability of the DNA, it is crucial to analyze uptake mechanisms and trafficking pathways. Here, a detailed study of uptake, stability, and localization of PLL-g-PEG-DNA nanoparticles within COS-7 cells is presented, using FACS analysis to assess the involvement of different uptake mechanisms, colocalization studies with markers indicative for different endocytotic pathways, and immunofluorescence staining to analyze colocalization with intracellular compartments. PLL-g-PEG-DNA nanoparticles were internalized in an energy-dependent manner after 2 h and accumulated in the perinuclear region after >6 h. The nanoparticles were found to be stable within the cytoplasm for at least 24 h and did not colocalize with the endosomal pathway. Nanoparticle uptake was approximately 50% inhibited by genistein, an inhibitor of the caveolae-mediated pathway. However, genistein did not inhibit gene expression, and PLL-g-PEG-DNA nanoparticles were not colocalized with caveolin-1 indicating that caveolae-mediated endocytosis is not decisive for DNA delivery. Clathrin-mediated endocytosis and macropinocytosis pathways were reduced by 17 and 24%, respectively, in the presence of the respective inhibitors. When cells were transfected in the presence of double and triple inhibitors, transfection efficiencies were increasingly reduced by 40 and 70%, respectively; however, no differences were found between the different uptake mechanisms. These findings suggest that PLL-g-PEG-DNA nanoparticles enter by several pathways and might therefore be an efficient and versatile tool to deliver therapeutic DNA

    Engineered polyelectrolyte multilayer substrates for adhesion, proliferation, and differentiation of human mesenchymal stem cells

    Full text link
    Polyelectrolyte multilayer coatings have emerged as substrates to control cellular behavior, but interactions with human multipotent mesenchymal stromal cells (MSCs) have not been studied. We looked at layer-by-layer coatings of cationic poly-L-lysine (PLL) and anionic hyaluronic acid (HA) as substrates for MSCs of placenta and adipose tissue. This system allows for modulation of thickness (number of deposition cycles), stiffness (chemical cross-linking of bulk layer), and adhesiveness (fibronectin (FN) interface). Native, as-built PLL/HA multilayer coatings were poorly adhesive for MSCs despite spectroscopy-confirmed high surface density of pre-adsorbed FN. Stratification of cross-linked PLL/HA multilayers of different stiffnesses revealed that multilayers modified with a high cross-linking regimen became efficient substrates for MSC adhesion and proliferation. MSCs on cross-linked multilayers grew to confluence. Using comparative confocal microscopy analysis of PLL/HA multilayers with physically adsorbed versus chemically coupled FN, we demonstrated that cross-linking strongly influenced FN surface distribution, leading to denser presentation of adhesion sites for cells. The covalent affixation of FN promoted focal adhesion formation and was critical to maintaining densely grown MSC cultures over weeks for their differentiation. Multilayer-bound MSCs were capable of differentiating into osteocytes and chondrocytes upon culture with induction factors. Together, cross-linked, FN-terminated PLL/HA multilayers provide a versatile platform for studies of human MSCs for biotechnological or therapeutic applications

    Cyto- and hemocompatibility of a biodegradable 3D-scaffold material designed for medical applications

    Full text link
    In this study, the polyester urethane Degrapol® (DP) was explored for medical applications. Electrospun DP-fiber fleeces were characterized with regard to fiber morphology, swelling, and interconnectivity of interfiber spaces. Moreover, DP was assayed for cell proliferation and hemocompatibility being a prerequisite to any further in vivo application. It was shown that DP-fiber fleeces produced at different humidity while spinning affects interconnectivity of interfiber spaces, such that the higher the humidity the looser the resulting fiber fleeces. When the spinning target was cooled with dry ice, the resulting DP-fibers remained less fused to each other. However, permeability for fluorescent beads was not significantly increased. Fibroblast adhesion and proliferation occurred in a comparable manner on native as well as on fibronectin or collagen I adsorbed DP-fiber fleeces. On DP-surfaces fibroblasts proliferated equally well as compared with glass or PLGA surfaces or DP-surfaces adsorbed with fibronectin or collagen I. In contrast, human umbilical vein endothelial cells proliferated only after adsorption of DP-surfaces with fibronectin or collagen I, indicating that different cell types respond differently to DP-surfaces. Furthermore, hemocompatibility of DP-surfaces was found to be similar or better to PLGA or stainless steel, both medically used materials. These experiments indicate that DP-fiber fleeces or surfaces might be useful for tissue engineering

    Accelerometer-measured physical activity and its impact on sleep quality in patients suffering from restless legs syndrome

    No full text
    Background!#!The primary symptoms of restless legs syndrome (RLS) are sleep onset insomnia and difficulty to maintain sleep. Previous studies have shown that regular physical activity can reduce the risk of developing RLS. However, the relationship between physical activity and sleep quality parameters in individuals suffering from RLS has not yet been investigated by applying accelerometry. Thus, the present study investigates the impact of physical activity (measuring both intensity levels and duration of physical activity) during the day (7-12 h, 12-18 h, 18-23 h) on sleep quality in patients suffering from idiopathic RLS by applying a real-time approach.!##!Methods!#!In a sample of 47 participants suffering from idiopathic RLS, physical activity and sleep quality were measured over one week using accelerometers. For data analysis, physical activity levels and step counts during three periods of the day (morning, afternoon, evening) were correlated with sleep quality parameters of the subsequent night.!##!Results!#!This observational study revealed that in most instances physical activity was not correlated with sleep parameters (two exceptions exist: steps taken in the morning were negatively correlated with periodic leg movements during sleep, and physical activity in the evening was negatively correlated with total sleep time). The physical activity levels of the participants in this study, however, were unexpectedly high compared to population-level data and variance in physical activity was low. The average activity was 13,817 (SD = 4086) steps and 347 (SD = 117) minutes of moderate physical activity per day in females, and 10,636 (SD = 3748) steps and 269 (SD = 69) minutes of moderate physical activity in males, respectively. Participants did not engage in any vigorous physical activity.!##!Conclusions!#!Further interventional studies are needed to investigate the daily effects of different intensities of physical activity on RLS symptoms
    corecore