84 research outputs found

    Large family with both parents affected by distinct BRCA1 mutations: implications for genetic testing

    Get PDF
    Although the probability of both parents being affected by BRCA1 mutations is not negligible, such families have not been systematically described in the literature. Here we present a large breast-ovarian cancer family, where 3 sisters and 1 half-sister inherited maternal BRCA1 5382insC mutation while the remaining 2 sisters carried paternal BRCA1 1629delC allele. No BRCA1 homozygous mutations has been detected, that is consistent with the data on lethality of BRCA1 knockout mice. This report exemplifies that the identification of a single cancer-predisposing mutation within the index patient may not be sufficient in some circumstances. Ideally, all family members affected by breast or ovarian tumor disease have to be subjected to the DNA testing, and failure to detect the mutation in any of them calls for the search of the second cancer-associated allele

    Integration of cardiovascular risk assessment with COVID-19 using artificial intelligence

    Get PDF
    Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors

    Xirp Proteins Mark Injured Skeletal Muscle in Zebrafish

    Get PDF
    Myocellular regeneration in vertebrates involves the proliferation of activated progenitor or dedifferentiated myogenic cells that have the potential to replenish lost tissue. In comparison little is known about cellular repair mechanisms within myocellular tissue in response to small injuries caused by biomechanical or cellular stress. Using a microarray analysis for genes upregulated upon myocellular injury, we identified zebrafish Xin-actin-binding repeat-containing protein1 (Xirp1) as a marker for wounded skeletal muscle cells. By combining laser-induced micro-injury with proliferation analyses, we found that Xirp1 and Xirp2a localize to nascent myofibrils within wounded skeletal muscle cells and that the repair of injuries does not involve cell proliferation or Pax7+ cells. Through the use of Xirp1 and Xirp2a as markers, myocellular injury can now be detected, even though functional studies indicate that these proteins are not essential in this process. Previous work in chicken has implicated Xirps in cardiac looping morphogenesis. However, we found that zebrafish cardiac morphogenesis is normal in the absence of Xirp expression, and animals deficient for cardiac Xirp expression are adult viable. Although the functional involvement of Xirps in developmental and repair processes currently remains enigmatic, our findings demonstrate that skeletal muscle harbours a rapid, cell-proliferation-independent response to injury which has now become accessible to detailed molecular and cellular characterizations

    HEREDITARY BREAST CANCER

    No full text
    Hereditary breast cancer occurs in 5–20 % of cases and it is associated with inherited mutations in particular genes, such as BRCA1 и BRCA2 in most cases. The CHEK2, PTEN, TP53, ATM, RAD51, BLM, PALB2, Nbs genes are associated with low and median risks ofdeveloping breast cancer. Molecular genetic studies identify germinal mutations underlying hereditary breast cancer. In most cases hereditary breast cancer refers to triple-negative phenotype, which is the most aggressive type of breast cancer, that does not express the genes for estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 (HER2). The review presents the diagnostic and treatment methods of hereditary breast cancer. Clinical-morphological aspects allow the new diagnostic and treatment methods of hereditary breast cancer to be identified. Poly (ADP-ribose) polymerase (PARP) inhibitors demonstrate the potential for effective treatment of BRCA-associated breast cancer

    Heart and soul/PRKCi and nagie oko/Mpp5 regulate myocardial coherence and remodeling during cardiac morphogenesis

    No full text
    Organ morphogenesis requires cellular shape changes and tissue rearrangements that occur in a precisely timed manner. Here, we show that zebrafish heart and soul (Has)/protein kinase C iota (PRKCi) is required tissue-autonomously within the myocardium for normal heart morphogenesis and that this function depends on its catalytic activity. In addition, we demonstrate that nagie oko (Nok) is the functional homolog of mammalian protein associated with Lin-seven 1 (Pals1)/MAGUK p55 subfamily member 5 (Mpp5), and we dissect its earlier and later functions during myocardial morphogenesis. Has/PRKCi and Nok/Mpp5 are required early for the polarized epithelial organization and coherence of myocardial cells during heart cone formation. Zygotic nok/mpp5 mutants have later myocardial defects, including an incomplete heart tube elongation corresponding with a failure of myocardial cells to correctly expand in size. Furthermore, we show that nok/mpp5 acts within myocardial cells during heart tube elongation. Together, these results demonstrate that cardiac morphogenesis depends on the polarized organization and coherence of the myocardium, and that the expansion of myocardial cell size contributes to the transformation of the heart cone into an elongated tube

    Genotype-phenotype correlations in patients with breast cancer and BRCA1 mutations (4153delA, 185delAG, 5382insC)

    No full text
    Hereditary breast cancer (BC) associated with BRCA1 mutations is characterized by a number of features as compared to sporadic and BRCA2- associated BC. Structural and functional changes in mutant proteins in accordance with the type and locus of BRCA1 mutations determine different variants of a BC phenotype. Identification of genotype-phenotype correlations in patients with hereditary BC makes it possible to single out its basic characteristics, to personalize its diagnosis and treatment, to estimate the prognosis and risk of multiple primary tumors in accordance with BRCA1 mutations (4153delA, 185delAG, 5382insC)
    • …
    corecore