2,197 research outputs found

    Outcome Analysis of Intra-Articular Scapula Fracture Fixation with Distal Radius Plate: A Multicenter Prospective Study

    Get PDF
    Background: Scapula fractures occur in approximately 1% of all fractures and constitute about 3% - 5% of all injuries of the shoulder joint. Objectives: This study aimed to evaluate the clinical outcomes of 20 surgically treated patients with displaced glenoid fractures after stabilization with distal radius plate. Methods: Between 2012 and 2015, at 2 centers (HMCH & SHCE) of Bhubaneswar Odisha, we stabilized 20 scapular intra-articular fractures surgically with distal radius locking plate and studied the outcome of the surgeries. The outcome of the 20 fractures was determined using the Constant and Murley score. Both shoulders were assessed and the score on the injured side was given as a percentage of that on the uninjured side. Results: The median score was 88% (mean 65%, range 30 to 100). The median score for strength was 21/25 (mean 19, range 0 to 25) and that for pain 11/15 (mean 11, range 5 to 15). The median functional score was 16/20 (mean 15, range 0 to 20). The mean range of active abduction of the shoulder was 135° (20 to 180), the mean range of flexion 138° (20 to 180) and the mean range of external rotation 38° (0 to 100). Five patients showed excellent result; 11 patients showed good result; three patients showed fair result and one patient had poor outcome according to the Constant-Murley score. A superficial infection settled with antibiotics after operation in one patient whose score at final follow-up was 96%. In one patient, delayed healing was reported because of infection. One patient with stiffness of the shoulder at six weeks underwent manipulation under anesthesia with a follow-up score of 81%. Conclusions: Various fixation modalities have been described in the literature, however fixation of intra-articular fracture of glenoid with distal radius locking plate for articular reconstruction in the presented series provides good functional outcome with early restoration of the range of motion of the shoulder

    Microscopic Inhomogeneity Induced Thermal Fluctuation in High Temperature Superconductors

    Get PDF

    Neural Network Model for Apparent Deterministic Chaos in Spontaneously Bursting Hippocampal Slices

    Full text link
    A neural network model that exhibits stochastic population bursting is studied by simulation. First return maps of inter-burst intervals exhibit recurrent unstable periodic orbit (UPO)-like trajectories similar to those found in experiments on hippocampal slices. Applications of various control methods and surrogate analysis for UPO-detection also yield results similar to those of experiments. Our results question the interpretation of the experimental data as evidence for deterministic chaos and suggest caution in the use of UPO-based methods for detecting determinism in time-series data.Comment: 4 pages, 5 .eps figures (included), requires psfrag.sty (included

    Stochastic reconstruction of sandstones

    Full text link
    A simulated annealing algorithm is employed to generate a stochastic model for a Berea and a Fontainebleau sandstone with prescribed two-point probability function, lineal path function, and ``pore size'' distribution function, respectively. We find that the temperature decrease of the annealing has to be rather quick to yield isotropic and percolating configurations. A comparison of simple morphological quantities indicates good agreement between the reconstructions and the original sandstones. Also, the mean survival time of a random walker in the pore space is reproduced with good accuracy. However, a more detailed investigation by means of local porosity theory shows that there may be significant differences of the geometrical connectivity between the reconstructed and the experimental samples.Comment: 12 pages, 5 figure

    Crystal structure and magnetic properties of spin-1/21/2 frustrated two-leg ladder compounds (C4_4H14_{14}N2_2)Cu2X6_2X_6 (XX= Cl and Br)

    Full text link
    We have successfully synthesized single crystals, solved the crystal structure, and studied the magnetic properties of a new family of copper halides (C4_4H14_{14}N2_2)Cu2X6_2X_6 (XX= Cl, Br). These compounds crystallize in an orthorhombic crystal structure with space group PnmaPnma. The crystal structure features Cu2+^{2+} dimers arranged parallel to each other that makes a zig-zag two-leg ladder-like structure. Further, there exists a diagonal interaction between two adjacent dimers which generates inter-dimer frustration. Both the compounds manifest a singlet ground state with a large gap in the excitation spectrum. Magnetic susceptibility is analyzed in terms of both interacting spin-1/21/2 dimer and two-leg ladder models followed by exact diagonalization calculations. Our theoretical calculations in conjunction with the experimental magnetic susceptibility establish that the spin-lattice can be described well by a frustrated two-leg ladder model with strong rung coupling (J0/kB116J_0/k_{\rm B} \simeq 116 K and 300 K), weak leg coupling (J/kB18.6J^{\prime\prime}/k_{\rm B} \simeq 18.6 K and 105 K), and equally weak diagonal coupling (J/kB23.2J^{\prime }/k_{\rm B} \simeq 23.2 K and 90 K) for Cl and Br compounds, respectively. These exchange couplings set the critical fields very high, making them experimentally inaccessible. The correlation function decays exponentially as expected for a gapped spin system. The structural aspects of both the compounds are correlated with their magnetic properties. The calculation of entanglement witness divulges strong entanglement in both the compounds which persists upto high temperatures, even beyond 370~K for the Br compound.Comment: 13 pages, 9 figures, 2 table

    Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media

    Full text link
    Numerical micropermeametry is performed on three dimensional porous samples having a linear size of approximately 3 mm and a resolution of 7.5 μ\mum. One of the samples is a microtomographic image of Fontainebleau sandstone. Two of the samples are stochastic reconstructions with the same porosity, specific surface area, and two-point correlation function as the Fontainebleau sample. The fourth sample is a physical model which mimics the processes of sedimentation, compaction and diagenesis of Fontainebleau sandstone. The permeabilities of these samples are determined by numerically solving at low Reynolds numbers the appropriate Stokes equations in the pore spaces of the samples. The physical diagenesis model appears to reproduce the permeability of the real sandstone sample quite accurately, while the permeabilities of the stochastic reconstructions deviate from the latter by at least an order of magnitude. This finding confirms earlier qualitative predictions based on local porosity theory. Two numerical algorithms were used in these simulations. One is based on the lattice-Boltzmann method, and the other on conventional finite-difference techniques. The accuracy of these two methods is discussed and compared, also with experiment.Comment: to appear in: Phys.Rev.E (2002), 32 pages, Latex, 1 Figur

    Interface pinning and slow ordering kinetics on infinitely ramified fractal structures

    Full text link
    We investigate the time dependent Ginzburg-Landau (TDGL) equation for a non conserved order parameter on an infinitely ramified (deterministic) fractal lattice employing two alternative methods: the auxiliary field approach and a numerical method of integration of the equations of evolution. In the first case the domain size evolves with time as L(t)t1/dwL(t)\sim t^{1/d_w}, where dwd_w is the anomalous random walk exponent associated with the fractal and differs from the normal value 2, which characterizes all Euclidean lattices. Such a power law growth is identical to the one observed in the study of the spherical model on the same lattice, but fails to describe the asymptotic behavior of the numerical solutions of the TDGL equation for a scalar order parameter. In fact, the simulations performed on a two dimensional Sierpinski Carpet indicate that, after an initial stage dominated by a curvature reduction mechanism \`a la Allen-Cahn, the system enters in a regime where the domain walls between competing phases are pinned by lattice defects. The lack of translational invariance determines a rough free energy landscape, the existence of many metastable minima and the suppression of the marginally stable modes, which in translationally invariant systems lead to power law growth and self similar patterns. On fractal structures as the temperature vanishes the evolution is frozen, since only thermally activated processes can sustain the growth of pinned domains.Comment: 16 pages+14 figure

    A crystalline, 2D polyarylimide cathode for ultrastable and ultrafast Li storage

    Get PDF
    Organic electrode materials are of long‐standing interest for next‐generation sustainable lithium‐ion batteries (LIBs). As a promising cathode candidate, imide compounds have attracted extensive attention due to their low cost, high theoretical capacity, high working voltage, and fast redox reaction. However, the redox active site utilization of imide electrodes remains challenging for them to fulfill their potential applications. Herein, the synthesis of a highly stable, crystalline 2D polyarylimide (2D‐PAI) integrated with carbon nanotube (CNT) is demonstrated for the use as cathode material in LIBs. The synthesized polyarylimide hybrid (2D‐PAI@CNT) is featured with abundant π‐conjugated redox‐active naphthalene diimide units, a robust cyclic imide linkage, high surface area, and well‐defined accessible pores, which render the efficient utilization of redox active sites (82.9%), excellent structural stability, and fast ion diffusion. As a consequence, high rate capability and ultrastable cycle stability (100% capacity retention after 8000 cycles) are achieved in the 2D‐PAI@CNT cathode, which far exceeds the state‐of‐the‐art polyimide electrodes. This work may inspire the development of novel organic electrodes for sustainable and durable rechargeable batteries
    corecore