13 research outputs found

    Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine

    No full text
    Metformin is an important antidiabetic drug and often used as a probe for drug-drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically-based pharmacokinetic (PBPK) model required the substantial lowering of the inhibition constant values of cimetidine for multidrug and toxin extrusion proteins from those obtained in vitro to capture the clinical DDI data between metformin and cimetidine.(1) We constructed new PBPK models in which the transporter-mediated uptake of metformin is driven by a constant membrane potential. Our models successfully captured the clinical DDI data using in vitro inhibition constant values and supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism upon sensitivity analysis and data fitting. Our refined PBPK models may facilitate prediction approaches for DDI involving metformin using in vitro inhibition constant values.Y

    Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032

    No full text
    A screening method was established to detect inhibitors of the biosynthetic pathways of aromatic amino acids and para-aminobenzoic acid, the precursor of folic acid, using an agar plate diffusion assay modified as an antagonism test. By this screening method, a family of three novel polycyclic polyketides named as abyssomicins was isolated from a marine strain of Verrucosispora. The main component abyssomicin C inhibits the pathway between chorismate and para-aminobenzoic acid and is strongly active against gram-positive bacteria, including multi-resistant clinical isolates of Staphylococcus aureus

    Crystal Structure of OxyB, a Cytochrome P450 Implicated in an Oxidative Phenol Coupling Reaction during Vancomycin Biosynthesis

    No full text
    Gene-inactivation studies point to the involvement of OxyB in catalyzing the first oxidative phenol coupling reaction during glycopeptide antibiotic biosynthesis. The oxyB gene has been cloned and sequenced from the vancomycin producer Amycolatopsis orientalis, and the hemoprotein has been produced in Escherichia coli, crystallized, and its structure determined to 1.7-Å resolution. OxyB gave UV-visible spectra characteristic of a P450-like hemoprotein in the low spin ferric state. After reduction to the ferrous state by dithionite or by spinach ferredoxin and ferredoxin reductase, the CO-ligated form gave a 450-nm peak in a UV-difference spectrum. Addition of putative heptapeptide substrates to resting OxyB produced type I changes to the UV spectrum, but no turnover was observed in the presence of ferredoxin and ferredoxin reductase, showing that either the peptides or the reduction system, or both, are insufficient to support a full catalytic cycle. OxyB exhibits the typical P450-fold, with helix L containing the signature sequence FGHGXHXCLG and Cys347 being the proximal axial thiolate ligand of the heme iron. The structural similarity of OxyB is highest to P450nor, P450terp, CYP119, and P450eryF. In OxyB, the F and G helices are rotated out of the active site compared with P450nor, resulting in a much more open active site, consistent with the larger size of the presumed heptapeptide substrate

    Crystal Structure of OxyB, a Cytochrome P450 Implicated in an Oxidative Phenol Coupling Reaction during Vancomycin Biosynthesis

    No full text
    Gene-inactivation studies point to the involvement of OxyB in catalyzing the first oxidative phenol coupling reaction during glycopeptide antibiotic biosynthesis. The oxyB gene has been cloned and sequenced from the vancomycin producer Amycolatopsis orientalis, and the hemoprotein has been produced in Escherichia coli, crystallized, and its structure determined to 1.7-Å resolution. OxyB gave UV-visible spectra characteristic of a P450-like hemoprotein in the low spin ferric state. After reduction to the ferrous state by dithionite or by spinach ferredoxin and ferredoxin reductase, the CO-ligated form gave a 450-nm peak in a UV-difference spectrum. Addition of putative heptapeptide substrates to resting OxyB produced type I changes to the UV spectrum, but no turnover was observed in the presence of ferredoxin and ferredoxin reductase, showing that either the peptides or the reduction system, or both, are insufficient to support a full catalytic cycle. OxyB exhibits the typical P450-fold, with helix L containing the signature sequence FGHGXHXCLG and Cys347 being the proximal axial thiolate ligand of the heme iron. The structural similarity of OxyB is highest to P450nor, P450terp, CYP119, and P450eryF. In OxyB, the F and G helices are rotated out of the active site compared with P450nor, resulting in a much more open active site, consistent with the larger size of the presumed heptapeptide substrate

    Considerations for Human ADME Strategy and Design Paradigm Shift(s) - An Industry White Paper.

    No full text
    The human absorption, distribution, metabolism, and excretion (hADME) study is the cornerstone of the clinical pharmacology package for small molecule drugs, providing comprehensive information on the rates and routes of disposition and elimination of drug-related material in humans through the use of 14 C-labeled drug. Significant changes have already been made in the design of the hADME study for many companies, but opportunity exists to continue to re-think both the design and timing of the hADME study in light of the potential offered by newer technologies, that enable flexibility in particular to reducing the magnitude of the radioactive dose used. This paper provides considerations on the variety of current strategies that exist across a number of pharmaceutical companies and on some of the ongoing debates around a potential move to the so called "human first/human only" approach, already adopted by at least one company. The paper also provides a framework for continuing the discussion in the application of further shifts in the paradigm

    A Decade in the MIST: Learnings from Investigations of Drug Metabolites in Drug Development Under the “Metabolites in Safety Testing” Regulatory Guidances

    No full text
    Since the introduction of MIST guidance by FDA in 2008 there have been major changes in the experimental methods for the identification and quantification of metabolites, ways to evaluate coverage of metabolites, and the timing of critical clinical and non-clinical studies to generate these information. In this cross-industry article we discuss how the increased focus on human drug metabolites and their potential contribution to safety and drug-drug interactions has influenced the approaches taken by industry for the identification and quantitation of human drug metabolites. Before the MIST guidance was issued, the method of choice for generating comprehensive metabolite profile was radiochromatography. The MIST guidance increased the focus on human drug metabolites and their potential contribution to safety and drug-drug interactions and led to changes in the practices of drug metabolism scientists. In addition, the guidance suggested that human metabolism studies should also be accelerated which has led to more frequent determination of human metabolite profiles from multiple ascending dose clinical studies. Generating a comprehensive and quantitative profile of human metabolites has become a more urgent task. This, together with technological advances, led to a general shift of the focus towards earlier human metabolism studies, using high resolution mass spectrometry, and to a reduction in animal radiolabel ADME studies. The changes induced by the MIST guidance are highlighted by six case studies included herein, reflecting different stages of implementation of the MIST guidance within the pharmaceutical industr
    corecore