19 research outputs found
The cellular prion protein increases the uptake and toxicity of tdp-43 fibrils
Cytoplasmic aggregation of the primarily nuclear TAR DNA-binding protein 43 (TDP-43) affects neurons in most amyotrophic lateral sclerosis (ALS) and approximately half of frontotemporal lobar degeneration (FTLD) cases. The cellular prion protein, PrPC, has been recognized as a common receptor and downstream effector of circulating neurotoxic species of several proteins involved in neurodegeneration. Here, capitalizing on our recently adapted TDP-43 real time quaking induced reaction, we set reproducible protocols to obtain standardized preparations of recombinant TDP-43 fibrils. We then exploited two different cellular systems (human SH-SY5Y and mouse N2a neuroblastoma cells) engineered to express low or high PrPC levels to investigate the link between PrPC expression on the cell surface and the internalization of TDP-43 fibrils. Fibril uptake was increased in cells overexpressing either human or mouse prion protein. Increased internalization was associated with detrimental consequences in all PrP-overexpressing cell lines but was milder in cells expressing the human form of the prion protein. As described for other amyloids, treatment with TDP-43 fibrils induced a reduction in the accumulation of the misfolded form of PrPC, PrPSc, in cells chronically infected with prions. Our results expand the list of misfolded proteins whose uptake and detrimental effects are mediated by PrPC, which encompass almost all pathological amyloids involved in neurodegeneration
The alpha-synuclein RT-QuIC products generated by the olfactory mucosa of patients with parkinson’s disease and multiple system atrophy induce inflammatory responses in SH-SY5Y cells
Parkinson’s disease (PD) and multiple system atrophy (MSA) are caused by two distinct strains of disease-associated α-synuclein (αSynD). Recently, we have shown that olfactory mucosa (OM) samples of patients with PD and MSA can seed the aggregation of recombinant α-synuclein by means of Real-Time Quaking-Induced Conversion (αSyn_RT-QuIC). Remarkably, the biochemical and morphological properties of the final α-synuclein aggregates significantly differed between PD and MSA seeded samples. Here, these aggregates were given to neuron-like differentiated SH-SY5Y cells and distinct inflammatory responses were observed. To deepen whether the morphological features of α-synuclein aggregates were responsible for this variable SH-SY5Y inflammatory response, we generated three biochemically and morphologically distinct α-synuclein aggregates starting from recombinant α-synuclein that were used to seed αSyn_RT-QuIC reaction; the final reaction products were used to stimulate SH-SY5Y cells. Our study showed that, in contrast to OM samples of PD and MSA patients, the artificial aggregates did not transfer their distinctive features to the αSyn_RT-QuIC products and the latter induced analogous inflammatory responses in cells. Thus, the natural composition of the αSynD strains but also other specific factors in OM tissue can substantially modulate the biochemical, morphological and inflammatory features of the αSyn_RT-QuIC products
Pmca-generated prions from the olfactory mucosa of patients with fatal familial insomnia cause prion disease in mice
Background: Fatal Familial Insomnia (FFI) is a genetic prion disease caused by the D178N mutation in the prion protein gene (PRNP) in coupling phase with methionine at PRNP 129. In 2017, we have shown that the olfactory mucosa (OM) collected from FFI patients contained traces of PrPSc detectable by Protein Misfolding Cyclic Amplification (PMCA). Methods: In this work, we have challenged PMCA-generated products obtained from OM and brain homogenate of FFI patients in BvPrP-Tg407 transgenic mice expressing the bank vole prion protein to test their ability to induce prion pathology. Results: All inoculated mice developed mild spongiform changes, astroglial activation, and PrPSc deposition mainly affecting the thalamus. However, their neuropathological alterations were different from those found in the brain of BvPrP-Tg407 mice injected with raw FFI brain homogenate. Conclusions: Although with some experimental constraints, we show that PrPSc present in OM of FFI patients is potentially infectious. Funding: This work was supported in part by the Italian Ministry of Health (GR-2013-02355724 and Ricerca Corrente), MJFF, ALZ, Alzheimer’s Research UK and the Weston Brain Institute (BAND2015), and Euronanomed III (SPEEDY) to FM; by the Spanish Ministerio de EconomĂa y Competitividad (grant AGL2016-78054-R [AEI/FEDER, UE]) to JMT and JCE; AM-M was supported by a fellowship from the INIA (FPI-SGIT-2015-02)
PMCA-Based Detection of Prions in the Olfactory Mucosa of Patients With Sporadic Creutzfeldt–Jakob Disease
Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disorder caused by the conformational conversion of the prion protein (PrPC) into an abnormally folded form, named prion (or PrPSc). The combination of the polymorphism at codon 129 of the PrP gene (coding either methionine or valine) with the biochemical feature of the proteinase-K resistant PrP (generating either PrPSc type 1 or 2) gives rise to different PrPSc strains, which cause variable phenotypes of sCJD. The definitive diagnosis of sCJD and its classification can be achieved only post-mortem after PrPSc identification and characterization in the brain. By exploiting the Real-Time Quaking-Induced Conversion (RT-QuIC) assay, traces of PrPSc were found in the olfactory mucosa (OM) of sCJD patients, thus demonstrating that PrPSc is not confined to the brain. Here, we have optimized another technique, named protein misfolding cyclic amplification (PMCA) for detecting PrPSc in OM samples of sCJD patients. OM samples were collected from 27 sCJD and 2 genetic CJD patients (E200K). Samples from 34 patients with other neurodegenerative disorders were included as controls. Brains were collected from 26 sCJD patients and 16 of them underwent OM collection. Brain and OM samples were subjected to PMCA using the brains of transgenic mice expressing human PrPC with methionine at codon 129 as reaction substrates. The amplified products were analyzed by Western blot after proteinase K digestion. Quantitative PMCA was performed to estimate PrPSc concentration in OM. PMCA enabled the detection of prions in OM samples with 79.3% sensitivity and 100% specificity. Except for a few cases, a predominant type 1 PrPSc was generated, regardless of the tissues analyzed. Notably, all amplified PrPSc were less resistant to PK compared to the original strain. In conclusion, although the optimized PMCA did not consent to recognize sCJD subtypes from the analysis of OM collected from living patients, it enabled us to estimate for the first time the amount of prions accumulating in this biological tissue. Further assay optimizations are needed to faithfully amplify peripheral prions whose recognition could lead to a better diagnosis and selection of patients for future clinical trials
Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids
Chronic wasting disease (CWD) is a highly contagious prion disease affecting captive and free-ranging cervid populations. CWD has been detected in United States, Canada, South Korea and, most recently, in Europe (Norway, Finland and Sweden). Animals with CWD release infectious prions in the environment through saliva, urine and feces sustaining disease spreading between cervids but also potentially to other non-cervids ruminants (e.g. sheep, goats and cattle). In the light of these considerations and due to CWD unknown zoonotic potential, it is of utmost importance to follow specific surveillance programs useful to minimize disease spreading and transmission. The European community has already in place specific surveillance measures, but the traditional diagnostic tests performed on nervous or lymphoid tissues lack sensitivity. We have optimized a Real-Time Quaking-Induced Conversion (RT-QuIC) assay for detecting CWD prions with high sensitivity and specificity to try to overcome this problem. In this work, we show that bank vole prion protein (PrP) is an excellent substrate for RT-QuIC reactions, enabling the detection of trace-amounts of CWD prions, regardless of prion strain and cervid species. Beside supporting the traditional diagnostic tests, this technology could be exploited for detecting prions in peripheral tissues from live animals, possibly even at preclinical stages of the disease
Murine adipose-derived mesenchymal stromal cell vesicles: Invitro clues for neuroprotective and neuroregenerative approaches
Background aims: Adipose-derived mesenchymal stromal cells (ASC) are known to promote neuroprotection and neuroregeneration invitro and invivo. These biological effects are probably mediated by paracrine mechanisms. In recent years, nanovesicles (NV) and microvesicles (MV) have been shown to play a major role in cell-to-cell communication. We tested the efficacy of NV and MV obtained from ASC in mediating neuroprotection and neuroregeneration invitro. Methods: We exposed neuronal cells (both cell line and primary cultures) to oxidative stress in the presence or not of NV or MV. Results: In this experimental setting, we found that low doses of NV or MV protected neurons from apoptotic cell death. We then assessed the neuroregenerative effect of NV/MV in cerebellar slice cultures demyelinated with lysophosphatidylcholine. We observed that low but not higher doses of NV and MV increased the process of remyelination and activated nestin-positive oligodendroglial precursors. Conclusions: Taken together, our data invitro support the relevance of ASC vesicles as a source of protecting and regenerating factors that might modulate the microenvironment in neuro-inflammatory as well as in neurodegenerative disorders. The present findings may suggest that stromal cell-derived vesicles might represent a potential therapeutic tool, enabling the safe administration of stromal cell effector factors, avoiding the cellular counterpart
Murine adipose-derived mesenchymal stromal cell vesicles: in vitro clues for neuroprotective and neuroregenerative approaches
BACKGROUND AIMS: Adipose-derived mesenchymal stromal cells (ASC) are known to promote neuroprotection and neuroregeneration in vitro and in vivo. These biological effects are probably mediated by paracrine mechanisms. In recent years, nanovesicles (NV) and microvesicles (MV) have been shown to play a major role in cell-to-cell communication. We tested the efficacy of NV and MV obtained from ASC in mediating neuroprotection and neuroregeneration in vitro.METHODS: We exposed neuronal cells (both cell line and primary cultures) to oxidative stress in the presence or not of NV or MV.RESULTS: In this experimental setting, we found that low doses of NV or MV protected neurons from apoptotic cell death. We then assessed the neuroregenerative effect of NV/MV in cerebellar slice cultures demyelinated with lysophosphatidylcholine. We observed that low but not higher doses of NV and MV increased the process of remyelination and activated nestin-positive oligodendroglial precursors.CONCLUSIONS: Taken together, our data in vitro support the relevance of ASC vesicles as a source of protecting and regenerating factors that might modulate the microenvironment in neuro-inflammatory as well as in neurodegenerative disorders. The present findings may suggest that stromal cell-derived vesicles might represent a potential therapeutic tool, enabling the safe administration of stromal cell effector factors, avoiding the cellular counterpart
The uptake of tau amyloid fibrils is facilitated by the cellular prion protein and hampers prion propagation in cultured cells
Tauopathies are prevalent, invariably fatal brain diseases for which no cure is available. Tauopathies progressively affect the brain through cell-to-cell transfer of tau protein amyloids, yet the spreading mechanisms remain unknown. Here we show that the cellular prion protein (PrPC) facilitates the uptake of tau aggregates by cultured cells, possibly by acting as an endocytic receptor. In mouse neuroblastoma cells, pull-down experiments revealed that tau amyloids bind to PrPC. Confocal images of both wild-type and PrPC -knockout N2a cells treated with fluorescently labeled synthetic tau fibrils showed that the internalization was reduced in isogenic cells devoid of the gene encoding PrPC. Pre-treatment of the same cells with antibodies against N-proximal epitopes of PrPC impaired the binding of tau amyloids and decreased their uptake. Surprisingly, exposure of chronically prion-infected cells to tau amyloids reduced the accumulation of aggregated prion protein and this effect lasted for more than 72 hr after amyloid removal. These results point to bidirectional interactions between the two proteins: while PrPC mediates the entrance of tau fibrils in cells, PrPSc buildup is greatly reduced in their presence, possibly because of an impairment in the prion conversion process. (Figure presented.)
Different tau fibril types reduce prion level in chronically and de novo infected cells
Neurodegenerative diseases are often characterized by the codeposition of different amyloidogenic proteins, normally defining distinct proteinopathies. An example is represented by prion diseases, where the classical deposition of the aberrant conformational isoform of the prion protein (PrPSc) can be associated with tau insoluble species, which are usually involved in another class of diseases called tauopathies. How this copresence of amyloidogenic proteins can influence the progression of prion diseases is still a matter of debate. Recently, the cellular form of the prion protein, PrPC, has been investigated as a possible receptor of amyloidogenic proteins, since its binding activity with Aβ, tau, and α-synuclein has been reported, and it has been linked to several neurotoxic behaviors exerted by these proteins. We have previously shown that the treatment of chronically prion-infected cells with tau K18 fibrils reduced PrPSc levels. In this work, we further explored this mechanism by using another tau construct that includes the sequence that forms the core of Alzheimer's disease tau filaments in vivo to obtain a distinct fibril type. Despite a difference of six amino acids, these two constructs form fibrils characterized by distinct biochemical and biological features. However, their effects on PrPSc reduction were comparable and probably based on the binding to PrPC at the plasma membrane, inhibiting the pathological conversion event. Our results suggest PrPC as receptor for different types of tau fibrils and point out a role of tau amyloid fibrils in preventing the pathological PrPC to PrPSc conformational change