79 research outputs found

    Charakterisierung von Nanokristallen in Siliziumkarbid mittels Transmissionselektronenmikroskopie

    Get PDF
    Diese Arbeit beschäftigt sich mit der transmissionselektronenmikroskopischen Untersuchung von halbleitenden und magnetischen Nanokristallen (Größe ~10 nm) im Halbleiter Siliziumkarbid (SiC). Dabei kommen sowohl experimentelle Methoden wie die konventionelle Transmissionselektronenmikroskopie, die Hochauflösung, Elektronenholographie als auch Spektroskopie zur Anwendung. Andererseits werden Modellrechnungen wie die Molekulardynamik und darauf aufbauend die Hochauflösungsbildsimulation angewendet, um die experimentellen Ergebnisse zu erklären und zu beschreiben. Die zwei Arten von Nanokristallen (halbleitendes GeSi und metallische Nanokristalle) werden ausführlich hinsichtlich Parametern wie Größenverteilung, Kristallographie, Form und Facettierung analysiert. Das experimentell bestimmte Nanokristalleigenschaften können durch die parallel durchgeführten Modellrechnungen von Nanokristallen in SiC verifiziert und erklärt werden. In der Arbeit werden erstmals magnetische Eigenschaften von einzelnen, eingebetteten Nanokristallen durch Einsatz von Elektronenholographie bestimmt

    Contamination-assisted rather than metal catalyst-free bottom-up growth of silicon nanowires

    Get PDF
    Well-established metal-catalyzed vapor-liquid-solid (VLS) growth represents still undoubtedly the key technology for bottom-up synthesis of single-crystalline silicon nanowires (SiNWs). Although various SiNW applications are demonstrated, electrical and optical properties are exposed to the inherent risk of electronic deep trap state formation by metal impurities. Therefore, metal catalyst-free growth strategies are intriguing. The oxid-assisted SiNW synthesis is explored and it is shown that contamination control is absolutely crucial. Slightest metal impurities, such as iron, are sufficient to trigger SiNW growth, calling into question true metal catalyst-free SiNW synthesis. Therefore, the term contamination-assisted is rather introduced and it is shown that contamination-assisted SiNW growth is determined by the chemical surface treatment (e.g., with KOH solution), but also by the crystal orientation of a silicon substrate. SiNWs are grown in this regards in a reproducible manner, but so far with a distinct tapering, using a conventional gas-phase reactor system at temperatures of about 680 °C and monosilane (SiH4) as the precursor gas. The synthesized SiNWs show convincing electrical properties compared to Au-catalyzed SiNWs. Nevertheless, contamination-assisted growth of SiNWs appears to be an important step toward bottom-up synthesis of high-quality SiNWs with a lower risk of metal poisoning, such as those needed for CMOS and other technologies

    POM@ZIF Derived Mixed Metal Oxide Catalysts for Sustained Electrocatalytic Oxygen Evolution

    Get PDF
    The design of efficient and stable oxygen evolution reaction (OER) catalysts based on noble-metal-free materials is crucial for energy conversion and storage. In this work, it was demonstrated how polyoxometalate (POM)-doped ZIF-67 can be converted into a stable oxygen evolution electrocatalyst by chemical etching, cation exchange, and thermal annealing steps. Characterization by X-ray photoelectron spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and Raman spectroscopy indicate that POM-doped ZIF-67 derived carbon-supported metal oxides were synthesized. The resulting composite shows structural and compositional advantages which lead to low overpotential (306 mV at j=10 mA ⋅ cm−2) and long-term stability under harsh OER conditions (1.0 M aqueous KOH)

    Bottom-up formation of robust gold carbide

    Get PDF
    A new phenomenon of structural reorganization is discovered and characterized for a gold-carbon system by in-situ atomic-resolution imaging at temperatures up to 1300 K. Here, a graphene sheet serves in three ways, as a quasi transparent substrate for aberration-corrected high-resolution transmission electron microscopy, as an in-situ heater, and as carbon supplier. The sheet has been decorated with gold nanoislands beforehand. During electron irradiation at 80 kV and at elevated temperatures, the accumulation of gold atoms has been observed on defective graphene sites or edges as well as at the facets of gold nanocrystals. Both resulted in clustering, forming unusual crystalline structures. Their lattice parameters and surface termination differ significantly from standard gold nanocrystals. The experimental data, supported by electron energy loss spectroscopy and density-functional theory calculations, suggests that isolated gold and carbon atoms form – under conditions of heat and electron irradiation – a novel type of compound crystal, Au-C in zincblende structure. The novel material is metastable, but surprisingly robust, even under annealing condition

    Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice

    Get PDF
    Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of permeation through defects in the graphenic lattice are still unclear and remain unobserved in action, at the atomic level. Here, the direct observation of palladium atoms from a nanoparticle passing through a defect in a single-walled carbon nanotube one-by-one has been achieved with atomic resolution in real time, revealing key stages of the atomic permeation. Bonding between the moving atom and dangling bonds around the orifice, immediately before and after passing through the subnano-pore, plays an important role in the process. Curvature of the graphenic lattice crucially defines the direction of permeation from concave to convex side due to a difference in metal-carbon bonding at the curved surfaces as confirmed by density functional theory calculations, demonstrating the potential of porous carbon nanotubes for atom sieving

    Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes

    Get PDF
    The synthesis of ultrathin rhenium disulfide (ReS2) nanoribbons within single-walled carbon nanotubes (SWNTs) has been established. Dirhenium decacarbonyl complex is encapsulated into the SWNTs to provide a source of confined rhenium atoms, which readily react with iodine to form discrete nm-sized clusters of rhenium iodide [Re6I14]2− embedded in the nanotubes. The final step of the synthesis is accomplished by admitting hydrogen sulfide gas into nano test tubes, yielding twisted nanoribbons of rhenium disulfide encapsulated in carbon nanotubes, ReS2@SWNTs. The width, structure, and composition of rhenium disulfide nanoribbons are strictly controlled by the extreme confinement of the host-SWNT. A holistic analytical approach combining complementary imaging and analysis methods is used at each synthetic step to elucidate the structure and composition of the guest material and reveal the role of the SWNT contributing towards the electronic interactions with encapsulated inorganic structures. As ReS2 nanoribbons are expected to retain the electronic properties of the bulk material, such as direct bandgap, the low dimensional form of this material can be of interest for use in nanoscale electronic devices
    • …
    corecore