401 research outputs found

    Book reviews

    Get PDF
    Click on the link to view

    Immunisation against gonadotrophin-releasing hormone (GnRH) reduces agonistic behaviours in male rangeland goats

    Get PDF
    Rangeland goat bucks were used to evaluate the efficacy of a commercially available anti-gonadotrophin-releasing hormone vaccine, Improvac (Zoetis Australia, West Ryde, NSW, Australia). The hypothesis tested was that immunisation would suppress testosterone secretion by the testis and agonistic behaviour between male goats. We also compared intervals of 2 and 4 weeks between primary and booster immunisations and monitored responses over a 2-month period. The 45 goats were split into three groups (n = 15): one group receiving the vaccination booster on Day 14, one group receiving the vaccination booster on Day 28, and the Control group receiving sterile saline injections. Body mass, body condition score and scrotal circumference were measured fortnightly, and blood was collected at 2-week intervals and analysed for testosterone concentration. Behavioural interaction tests of 2-min duration were also conducted fortnightly. There was a significant decrease in paired testicular circumference (P < 0.05) and testosterone concentration (P < 0.01) in both vaccination groups by the end of the experiment at Day 60, compared with the Control group. Agonistic interactions measured at Day 60 were significantly reduced in both vaccination groups (P < 0.05) compared with the Control group. These results support the efficacy of Improvac in reducing agonistic behaviours in rangeland goat bucks and suggest that the use of the vaccine may assist in reducing social stress and possible injury in groups of confined male goats

    Tràigh na Beirigh 2

    Get PDF

    Foreground removal from CMB temperature maps using an MLP neural network

    Full text link
    One of the main obstacles in extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the galactic foregrounds simple, power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting the CMB temperature signal from the combined CMB and foreground signals has been investigated. As a specific example, we have analysed simulated data, like that expected from the ESA Planck Surveyor mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates, over more than 80 percent of the sky, that are to a high degree uncorrelated with the foreground signals. A single network will be able to cover the dynamic range of the Planck noise level over the entire sky.Comment: Accepted for publication in Astrophysics and Space Scienc

    Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates

    Full text link
    We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor, using high precision torsional oscillator and DC calorimetry techniques. Our investigation focused on the onset of superfluidity at low temperatures as the 4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel system were used to determine the superfluid density of films with transition temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor system probed the excitation spectrum of both non-superfluid and superfluid films for temperatures down to 10 mK. Both sets of measurements suggest that the critical coverage for the onset of superfluidity corresponds to a mobility edge in the chemical potential, so that the onset transition is the bosonic analog of a superconductor-insulator transition. The superfluid density measurements, however, are not in agreement with the scaling theory of an onset transition from a gapless, Bose glass phase to a superfluid. The heat capacity measurements show that the non-superfluid phase is better characterized as an insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript

    Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia

    Get PDF
    Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes. We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget

    Study of Kosterlitz-Thouless transition of Bose systems governed by a random potential using quantum Monte Carlo simulations

    Full text link
    We perform quantum Monte Carlo simulations to study the 2D hard-core Bose-Hubbard model in a random potential. Our motivation is to investigate the effects of randomness on the Kosterlitz--Thouless (KT) transition. The chemical potential is assumed to be random, by site, with a Gaussian distribution. The KT transition is confirmed by a finite-size analysis of the superfluid density and the power-law decay of the correlation function. By varying the variance of the Gaussian distribution, we find that the transition temperature decreases as the variance increases. We obtain the phase diagram showing the superfluid and disordered phases, and estimate the quantum critical point (QCP). Our results on the ground state reveal the existence of the Bose glass phase. Finally, we discuss what the value of the variance at the QCP indicates from the viewpoint of percolation.Comment: 7 pages, 9 figures, accepted for publication in JPS

    Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 La2_{2}CuO4.11_{4.11} and La1.88_{1.88}Sr0.12_{0.12}CuO4_{4}

    Full text link
    This paper reports muon spin relaxation (MuSR) measurements of two single crystals of the title high-Tc cuprate systems where static incommensurate magnetism and superconductivity coexist. By zero-field MuSR measurements and subsequent analyses with simulations, we show that (1) the maximum ordered Cu moment size (0.36 Bohr magneton) and local spin structure are identical to those in prototypical stripe spin systems with the 1/8 hole concentration; (2) the static magnetism is confined to less than a half of the volume of the sample, and (3) regions with static magnetism form nano-scale islands with the size comparable to the in-plane superconducting coherence length. By transverse-field MuSR measurements, we show that Tc of these systems is related to the superfluid density, in the same way as observed in cuprate systems without static magnetism. We discuss a heuristic model involving percolation of these nanoscale islands with static magnetism as a possible picture to reconcile heterogeneity found by the present MuSR study and long-range spin correlations found by neutron scattering.Comment: 19 pages, 15 figures, submitted to Phys. Rev. B. E-mail: [email protected]

    Density functional theories and self-energy approaches

    Get PDF
    A purpose-designed microarray platform (Stressgenes, Phase 1) was utilised to investigate the changes in gene expression within the liver of rainbow trout during exposure to a prolonged period of confinement. Tissue and blood samples were collected from trout at intervals up to 648 h after transfer to a standardised confinement stressor, together with matched samples from undisturbed control fish. Plasma ACTH, cortisol, glucose and lactate were analysed to confirm that the neuroendocrine response to confinement was consistent with previous findings and to provide a phenotypic context to assist interpretation of gene expression data. Liver samples for suppression subtractive hybridisation (SSH) library construction were selected from within the experimental groups comprising “early” stress (2–48 h) and “late” stress (96–504 h). In order to reduce redundancy within the four SSH libraries and yield a higher number of unique clones an additional subtraction was carried out. After printing of the arrays a series of 55 hybridisations were executed to cover 6 time points. At 2 h, 6 h, 24 h, 168 h and 504 h 5 individual confined fish and 5 individual control fish were used with control fish only at 0 h. A preliminary list of 314 clones considered differentially regulated over the complete time course was generated by a combination of data analysis approaches and the most significant gene expression changes were found to occur during the 24 h to 168 h time period with a general approach to control levels by 504 h. Few changes in expression were apparent over the first 6 h. The list of genes whose expression was significantly altered comprised predominantly genes belonging to the biological process category (response to stimulus) and one cellular component category (extracellular region) and were dominated by so-called acute phase proteins. Analysis of the gene expression profile in liver tissue during confinement revealed a number of significant clusters. The major patterns comprised genes that were up-regulated at 24 h and beyond, the primary examples being haptoglobin, β-fibrinogen and EST10729. Two representative genes from each of the six k-means clusters were validated by qPCR. Correlations between microarray and qPCR expression patterns were significant for most of the genes tested. qPCR analysis revealed that haptoglobin expression was up-regulated approximately 8-fold at 24 h and over 13-fold by 168 h.This project was part funded by the European Commission (Q5RS-2001-02211), Enterprise Ireland and the Natural Environment Research Council of the United Kingdom
    corecore