18,992 research outputs found
Broadband choke for antenna structure
Broadband chokes and absorbers to reduce spurious radiation patterns of antenna array caused by support structure
Recommended from our members
Developmental divergence: motor trajectories in children with fragile X syndrome with and without co-occurring autism.
BackgroundAutism spectrum disorder (ASD) is highly prevalent in fragile X syndrome (FXS), affecting 50-70% of males. Motor impairments are a shared feature across autism and FXS that may help to better characterize autism in FXS. As motor skills provide a critical foundation for various language, cognitive, and social outcomes, they may serve an important mechanistic role for autism in FXS. As such, this study aimed to identify differences in motor trajectories across direct assessment and parent-report measures of fine and gross motor development between FXS with and without autism, and typical development, while controlling for cognitive functioning.MethodsThis prospective longitudinal study included 42 children with FXS, 24 of whom also had ASD (FXS + ASD), as well as 40 typically developing children. The Mullen Scales of Early Learning provided a direct measure of fine and gross motor skills, and the Vineland Adaptive Behavior Scales provided a measure of parent-reported fine and gross motor skills. Random slopes and random intercepts multilevel models were tested to determine divergence in developmental motor trajectories between groups when controlling for cognitive level.ResultsModel results indicated the children with FXS + ASD diverged from TD children by 9-months on all measures of gross and fine motor skills, even when controlling for cognitive level. Results also indicated an early divergence in motor trajectories of fine and gross motor skills between the FXS + ASD and FXS groups when controlling for cognitive level. This divergence was statistically significant by 18 months, with the FXS + ASD showing decelerated growth in motor skills across direct observation and parent-report measures.ConclusionsThis study is the first to examine longitudinal trends in motor development in children with FXS with and without comorbid ASD using both direct assessment and parent-report measures of fine and gross motor. Furthermore, it is among the first to account for nonverbal cognitive delays, a step towards elucidating the isolated role of motor impairments in FXS with and without ASD. Findings underscore the role of motor impairments as a possible signal representing greater underlying genetic liability, or as a potential catalyst or consequence, of co-occurring autism in FXS
Whiskerless Schottky diode
A Schottky diode for millimeter and submillimeter wave applications is comprised of a multi-layered structure including active layers of gallium arsenide on a semi-insulating gallium arsenide substrate with first and second insulating layers of silicon dioxide on the active layers of gallium arsenide. An ohmic contact pad lays on the silicon dioxide layers. An anode is formed in a window which is in and through the silicon dioxide layers. An elongated contact finger extends from the pad to the anode and a trench, preferably a transverse channel or trench of predetermined width, is formed in the active layers of the diode structure under the contact finger. The channel extends through the active layers to or substantially to the interface of the semi-insulating gallium arsenide substrate and the adjacent gallium arsenide layer which constitutes a buffer layer. Such a structure minimizes the effect of the major source of shunt capacitance by interrupting the current path between the conductive layers beneath the anode contact pad and the ohmic contact. Other embodiments of the diode may substitute various insulating or semi-insulating materials for the silicon dioxide, various semi-conductors for the active layers of gallium arsenide, and other materials for the substrate, which may be insulating or semi-insulating
Non-Linear Beam Splitter in Bose-Einstein Condensate Interferometers
A beam splitter is an important component of an atomic/optical Mach-Zehnder
interferometer. Here we study a Bose Einstein Condensate beam splitter,
realized with a double well potential of tunable height. We analyze how the
sensitivity of a Mach Zehnder interferometer is degraded by the non-linear
particle-particle interaction during the splitting dynamics. We distinguish
three regimes, Rabi, Josephson and Fock, and associate to them a different
scaling of the phase sensitivity with the total number of particles.Comment: draft, 19 pages, 10 figure
Spectral signatures of the Luttinger liquid to charge-density-wave transition
Electron- and phonon spectral functions of the one-dimensional,
spinless-fermion Holstein model at half filling are calculated in the four
distinct regimes of the phase diagram, corresponding to an attractive or
repulsive Luttinger liquid at weak electron-phonon coupling, and a band- or
polaronic insulator at strong coupling. The results obtained by means of kernel
polynomial and systematic cluster approaches reveal substantially different
physics in these regimes and further indicate that the size of the phonon
frequency significantly affects the nature of the quantum Peierls phase
transition.Comment: 5 pages, 4 figures; final version, accepted for publication in
Physical Review
Sub Shot-Noise Phase Sensitivity with a Bose-Einstein Condensate Mach-Zehnder Interferometer
Bose Einstein Condensates, with their coherence properties, have attracted
wide interest for their possible application to ultra precise interferometry
and ultra weak force sensors. Since condensates, unlike photons, are
interacting, they may permit the realization of specific quantum states needed
as input of an interferometer to approach the Heisenberg limit, the supposed
lower bound to precision phase measurements. To this end, we study the
sensitivity to external weak perturbations of a representative matter-wave
Mach-Zehnder interferometer whose input are two Bose-Einstein condensates
created by splitting a single condensate in two parts. The interferometric
phase sensitivity depends on the specific quantum state created with the two
condensates, and, therefore, on the time scale of the splitting process. We
identify three different regimes, characterized by a phase sensitivity scaling with the total number of condensate particles as i) the
standard quantum limit , ii) the sub shot-noise
and the iii) the Heisenberg limit . However, in a realistic dynamical BEC splitting, the 1/N limit
requires a long adiabaticity time scale, which is hardly reachable
experimentally. On the other hand, the sub shot-noise sensitivity can be reached in a realistic experimental setting. We
also show that the scaling is a rigorous upper bound in the limit
, while keeping constant all different parameters of the bosonic
Mach-Zehnder interferometer.Comment: 4 figure
- …