13,840 research outputs found
Hover performance tests of baseline metal and Advanced Technology Blade (ATB) rotor systems for the XV-15 tilt rotor aircraft
Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown
Atomic scale lattice distortions and domain wall profiles
We present an atomic scale theory of lattice distortions using strain related
variables and their constraint equations. Our approach connects constrained
{\it atomic length} scale variations to {\it continuum} elasticity and
describes elasticity at several length scales. We apply the approach to a
two-dimensional square lattice with a monatomic basis, and find the elastic
deformations and hierarchical atomic relaxations in the vicinity of a domain
wall between two different homogeneous strain states. We clarify the
microscopic origin of gradient terms, some of which are included
phenomenologically in Ginzburg-Landau theory, by showing that they are
anisotropic.Comment: 6 figure
Development of design criteria for an electrochemical water reclamation system
Electrochemical system design to recover water from human urin
Localized structures in Kagome lattices
We investigate the existence and stability of gap vortices and multi-pole gap
solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete
case and in a continuum one with periodic external modulation. In particular,
predictions are made based on expansion around a simple and analytically
tractable anti-continuum (zero coupling) limit. These predictions are then
confirmed for a continuum model of an optically-induced Kagome lattice in a
photorefractive crystal obtained by a continuous transformation of a honeycomb
lattice
Theory of Bubble Nucleation and Cooperativity in DNA Melting
The onset of intermediate states (denaturation bubbles) and their role during
the melting transition of DNA are studied using the Peyrard-Bishop-Daxuois
model by Monte Carlo simulations with no adjustable parameters. Comparison is
made with previously published experimental results finding excellent
agreement. Melting curves, critical DNA segment length for stability of bubbles
and the possibility of a two states transition are studied.Comment: 4 figures. Accepted for publication in Physical Review Letter
Electron-Phonon Driven Spin Frustration in Multi-Band Hubbard Models: MX Chains and Oxide Superconductors
We discuss the consequences of both electron-phonon and electron-electron
couplings in 1D and 2D multi-band (Peierls-Hubbard) models. After briefly
discussing various analytic limits, we focus on (Hartree-Fock and exact)
numerical studies in the intermediate regime for both couplings, where unusual
spin-Peierls as well as long-period, frustrated ground states are found. Doping
into such phases or near the phase boundaries can lead to further interesting
phenomena such as separation of spin and charge, a dopant-induced phase
transition of the global (parent) phase, or real-space (``bipolaronic'')
pairing. We discuss possible experimentally observable consequences of this
rich phase diagram for halogen-bridged, transition metal, linear chain
complexes (MX chains) in 1D and the oxide superconductors in 2D.Comment: 6 pages, four postscript figures (appended), in regular Te
Phase Transitions in the Spin-Half J_1--J_2 Model
The coupled cluster method (CCM) is a well-known method of quantum many-body
theory, and here we present an application of the CCM to the spin-half J_1--J_2
quantum spin model with nearest- and next-nearest-neighbour interactions on the
linear chain and the square lattice. We present new results for ground-state
expectation values of such quantities as the energy and the sublattice
magnetisation. The presence of critical points in the solution of the CCM
equations, which are associated with phase transitions in the real system, is
investigated. Completely distinct from the investigation of the critical
points, we also make a link between the expansion coefficients of the
ground-state wave function in terms of an Ising basis and the CCM ket-state
correlation coefficients. We are thus able to present evidence of the
breakdown, at a given value of J_2/J_1, of the Marshall-Peierls sign rule which
is known to be satisfied at the pure Heisenberg point (J_2 = 0) on any
bipartite lattice. For the square lattice, our best estimates of the points at
which the sign rule breaks down and at which the phase transition from the
antiferromagnetic phase to the frustrated phase occurs are, respectively, given
(to two decimal places) by J_2/J_1 = 0.26 and J_2/J_1 = 0.61.Comment: 28 pages, Latex, 2 postscript figure
Comment on "Can one predict DNA Transcription Start Sites by Studying Bubbles?"
Comment on T.S. van Erp, S. Cuesta-Lopez, J.-G. Hagmann, and M. Peyrard,
Phys. Rev. Lett. 95, 218104 (2005) [arXiv: physics/0508094]
Polaron Coherence as Origin of the Pseudogap Phase in High Temperature Superconducting Cuprates
Within a two component approach to high Tc copper oxides including polaronic
couplings, we identify the pseudogap phase as the onset of polaron ordering.
This ordering persists in the superconducting phase. A huge isotope effect on
the pseudogap onset temperature is predicted and in agreement with experimental
data. The anomalous temperature dependence of the mean square copper oxygen ion
displacement observed above, at and below Tc stems from an s-wave
superconducting component of the order parameter, whereas a pure d-wave order
parameter alone can be excluded.Comment: 7 pages, 2 figure
- …