13,520 research outputs found

    Hover performance tests of baseline metal and Advanced Technology Blade (ATB) rotor systems for the XV-15 tilt rotor aircraft

    Get PDF
    Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown

    Atomic scale lattice distortions and domain wall profiles

    Full text link
    We present an atomic scale theory of lattice distortions using strain related variables and their constraint equations. Our approach connects constrained {\it atomic length} scale variations to {\it continuum} elasticity and describes elasticity at several length scales. We apply the approach to a two-dimensional square lattice with a monatomic basis, and find the elastic deformations and hierarchical atomic relaxations in the vicinity of a domain wall between two different homogeneous strain states. We clarify the microscopic origin of gradient terms, some of which are included phenomenologically in Ginzburg-Landau theory, by showing that they are anisotropic.Comment: 6 figure

    Development of design criteria for an electrochemical water reclamation system

    Get PDF
    Electrochemical system design to recover water from human urin

    Localized structures in Kagome lattices

    Full text link
    We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice

    Theory of Bubble Nucleation and Cooperativity in DNA Melting

    Full text link
    The onset of intermediate states (denaturation bubbles) and their role during the melting transition of DNA are studied using the Peyrard-Bishop-Daxuois model by Monte Carlo simulations with no adjustable parameters. Comparison is made with previously published experimental results finding excellent agreement. Melting curves, critical DNA segment length for stability of bubbles and the possibility of a two states transition are studied.Comment: 4 figures. Accepted for publication in Physical Review Letter

    Electron-Phonon Driven Spin Frustration in Multi-Band Hubbard Models: MX Chains and Oxide Superconductors

    Get PDF
    We discuss the consequences of both electron-phonon and electron-electron couplings in 1D and 2D multi-band (Peierls-Hubbard) models. After briefly discussing various analytic limits, we focus on (Hartree-Fock and exact) numerical studies in the intermediate regime for both couplings, where unusual spin-Peierls as well as long-period, frustrated ground states are found. Doping into such phases or near the phase boundaries can lead to further interesting phenomena such as separation of spin and charge, a dopant-induced phase transition of the global (parent) phase, or real-space (``bipolaronic'') pairing. We discuss possible experimentally observable consequences of this rich phase diagram for halogen-bridged, transition metal, linear chain complexes (MX chains) in 1D and the oxide superconductors in 2D.Comment: 6 pages, four postscript figures (appended), in regular Te

    Phase Transitions in the Spin-Half J_1--J_2 Model

    Full text link
    The coupled cluster method (CCM) is a well-known method of quantum many-body theory, and here we present an application of the CCM to the spin-half J_1--J_2 quantum spin model with nearest- and next-nearest-neighbour interactions on the linear chain and the square lattice. We present new results for ground-state expectation values of such quantities as the energy and the sublattice magnetisation. The presence of critical points in the solution of the CCM equations, which are associated with phase transitions in the real system, is investigated. Completely distinct from the investigation of the critical points, we also make a link between the expansion coefficients of the ground-state wave function in terms of an Ising basis and the CCM ket-state correlation coefficients. We are thus able to present evidence of the breakdown, at a given value of J_2/J_1, of the Marshall-Peierls sign rule which is known to be satisfied at the pure Heisenberg point (J_2 = 0) on any bipartite lattice. For the square lattice, our best estimates of the points at which the sign rule breaks down and at which the phase transition from the antiferromagnetic phase to the frustrated phase occurs are, respectively, given (to two decimal places) by J_2/J_1 = 0.26 and J_2/J_1 = 0.61.Comment: 28 pages, Latex, 2 postscript figure

    Comment on "Can one predict DNA Transcription Start Sites by Studying Bubbles?"

    Full text link
    Comment on T.S. van Erp, S. Cuesta-Lopez, J.-G. Hagmann, and M. Peyrard, Phys. Rev. Lett. 95, 218104 (2005) [arXiv: physics/0508094]

    Polaron Coherence as Origin of the Pseudogap Phase in High Temperature Superconducting Cuprates

    Get PDF
    Within a two component approach to high Tc copper oxides including polaronic couplings, we identify the pseudogap phase as the onset of polaron ordering. This ordering persists in the superconducting phase. A huge isotope effect on the pseudogap onset temperature is predicted and in agreement with experimental data. The anomalous temperature dependence of the mean square copper oxygen ion displacement observed above, at and below Tc stems from an s-wave superconducting component of the order parameter, whereas a pure d-wave order parameter alone can be excluded.Comment: 7 pages, 2 figure
    • …
    corecore