482 research outputs found

    Characterization of the lncRNA transcriptome in mESC-derived motor neurons: Implications for FUS-ALS

    Get PDF
    Long non-coding RNAs (lncRNAs) are currently recognized as crucial players in nervous system development, function and pathology. In Amyotrophic Lateral Sclerosis (ALS), identification of causative mutations in FUS and TDP-43 or hexanucleotide repeat expansion in C9ORF72 point to the essential role of aberrant RNA metabolism in neurodegeneration. In this study, by taking advantage of an in vitro differentiation system generating mouse motor neurons (MNs) from embryonic stem cells, we identified and characterized the long non-coding transcriptome of MNs. Moreover, by using mutant mouse MNs carrying the equivalent of one of the most severe ALS-associated FUS alleles (P517L), we identified lncRNAs affected by this mutation. Comparative analysis with humanMNs derived in vitro frominduced pluripotent stemcells indicated that candidate lncRNAs are conserved between mouse and human. Our work provides a global view of the long non-coding transcriptome of MN, as a prerequisite toward the comprehension of the still poorly characterized non-coding side ofMNphysiopatholog

    Charge density increase in submonolayer organic field-effect transistors

    Get PDF
    Interface confinement plays a central role in charge carrier accumulation and transport along the channel of organic field-effect transistors. Understanding the relevant interfacial interactions that affect the energy landscape experienced by carriers in the channel is of fundamental interest. Here we investigate charge transport in the submonolayer regime of pentacene transistors in which confinement arises due to the finite size of the interconnected semiconducting islands. In situ real-time electrical characterization is used to monitor the formation and evolution of the accumulation layer at the very early stages of growth. The morphology of the confining interfaces is controlled by growth conditions and pentacene coverage. Charge transport occurs when percolation pathways connecting source and drain electrodes are formed at a critical coverage. The displacement current across the oxide/semiconductor interface is observed starting from the onset of percolation (0.69 monolayer coverage). The analysis of the characteristics shows that already the submonolayer film fully screens the gate field and accumulates higher charge carrier density as compared to the monolayer film. We propose an electrostatic model to correlate the charge density to the characteristic length scale of the submonolayer film and the thickness of the dielectric layer. This explains charge mobility and threshold voltage of thin-film transistors in the submonolayer regime

    A Regulatory Circuitry Between Gria2, miR-409, and miR-495 Is Affected by ALS FUS Mutation in ESC-Derived Motor Neurons

    Get PDF
    Mutations in fused in sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS). FUS is a multifunctional protein involved in the biogenesis and activity of several types of RNAs, and its role in the pathogenesis of ALS may involve both direct effects of disease-associated mutations through gain- and loss-of-function mechanisms and indirect effects due to the cross talk between different classes of FUS-dependent RNAs. To explore how FUS mutations impinge on motor neuron-specific RNA-based circuitries, we performed transcriptome profiling of small and long RNAs of motor neurons (MNs) derived from mouse embryonic stem cells carrying a FUS-P517L knock-in mutation, which is equivalent to human FUS-P525L, associated with a severe and juvenile-onset form of ALS. Combining ontological, predictive and molecular analyses, we found an inverse correlation between several classes of deregulated miRNAs and their corresponding mRNA targets in both homozygous and heterozygous P517L MNs. We validated a circuitry in which the upregulation of miR-409-3p and miR-495-3p, belonging to a brainspecific miRNA subcluster implicated in several neurodevelopmental disorders, produced the downregulation of Gria2, a subunit of the glutamate α‐amino‐3‐hydroxy‐5‐methyl-4-isoxazole propionic acid (AMPA) receptor with a significant role in excitatory neurotransmission. Moreover, we found that FUS was involved in mediating such miRNA repression. Gria2 alteration has been proposed to be implicated in MN degeneration, through disturbance of Ca2+ homeostasis, which triggers a cascade of damaging “excitotoxic” events. The molecular cross talk identified highlights a role for FUS in excitotoxicity and in miRNA-dependent regulation of Gria2. This circuitry also proved to be deregulated in heterozygosity, which matches the human condition perfectly

    The pulsed electron deposition technique for biomedical applications: A review

    Get PDF
    The "pulsed electron deposition" (PED) technique, in which a solid target material is ablated by a fast, high-energy electron beam, was initially developed two decades ago for the deposition of thin films of metal oxides for photovoltaics, spintronics, memories, and superconductivity, and dielectric polymer layers. Recently, PED has been proposed for use in the biomedical field for the fabrication of hard and soft coatings. The first biomedical application was the deposition of low wear zirconium oxide coatings on the bearing components in total joint replacement. Since then, several works have reported the manufacturing and characterization of coatings of hydroxyapatite, calcium phosphate substituted (CaP), biogenic CaP, bioglass, and antibacterial coatings on both hard (metallic or ceramic) and soft (plastic or elastomeric) substrates. Due to the growing interest in PED, the current maturity of the technology and the low cost compared to other commonly used physical vapor deposition techniques, the purpose of this work was to review the principles of operation, the main applications, and the future perspectives of PED technology in medicine

    Long-range selective transport of anions and cations in graphene oxide membranes, causing selective crystallization on the macroscale

    Get PDF
    Monoatomic nanosheets can form 2-dimensional channels with tunable chemical properties, for ion storage and filtering applications. Here, we demonstrate transport of K+, Na+, and Li+ cations and F- and Cl- anions on the centimeter scale in graphene oxide membranes (GOMs), triggered by an electric bias. Besides ion transport, the GOM channels foster also the aggregation of the selected ions in salt crystals, whose composition is not the same as that of the pristine salt present in solution, highlighting the difference between the chemical environment in the 2D channels and in bulk solutions

    A Randomized Controlled Trial of Teat-Sealant and Antibiotic Dry-Cow Treatments for Mastitis Prevention Shows Similar Effect on the Healthy Milk Microbiome

    Get PDF
    Lactating cows are routinely treated at dry-off with antibiotic infusions in each quarter for the cure and prevention of pathogenic intramammary infection, which remains the most common disease in dairy herds. This approach is known as blanket dry-cow therapy, usually effective for the prevention and cure of infections, but has been shown to potentially contribute to the emergence and spreading of antibiotic resistant bacterial strains. Exploring the use of non-antibiotic treatments coupled with selective dry-cow therapy is necessary to reduce the risk of antibiotic resistance and potential interference with milk microbiome balance. The impact of selective dry-cow therapy on the physiological milk microbiome needs to be carefully evaluated. In this small-scale trial, five healthy (no mastits, SCC <200,000 cells mL 121) second-parity cows from dry-off to 5 days after calving were sampled. For every cow, each quarter received a different treatment: (i) bismuth salnitrate (internal teat sealant, OrbSeal\uae, Zoetis, Italy), front right quarter; (ii) cephalonium dihydrate (Cepravin\uae, MSD, Italy), rear right quarter; (iii) benzathine cloxacillin (Cloxalene dry, Ati, Italy), rear left quarter. No treatment was applied to the remaining quarter (front left) which served as experimental control. For 16S rRNA gene sequencing, bacterial DNA was extracted from 5 ml of milk samples, amplified using the primers for the V3\u2013V4 hypervariable regions and sequenced in one MiSeq (Illumina) run with 2 7 250-base paired-end reads. Bacteriological results confirmed that the quarters were all healthy. The phyla Proteobacteria, Firmicutes, and Actinobacteria were the most abundant for all treatments and controls at all three timepoints, accounting for over 80% of the entire milk microbiota composition. No significant differences were found between treatments and controls in terms of the major alpha and beta diversity indexes, revealing that antibiotic, and non-antibiotic treatments for selective dry-cow therapy did not alter significantly the milk microbiome of dairy cows. The milk microbiota composition showed a clear evolution over the lactation cycle, and the overall changes in the milk microbiota diversity over the lactation cycle were mainly independent of treatments

    SNPGreen : a Database to Navigate Across Plant SNP Arrays

    Get PDF
    In recent years, the use of genomic information in plant and animal species for genetic improvement, and related fields has become routine. In order to accommodate market requirements (i.e. genotyping cost), manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species. There is a strong need to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. assemblies) SNP information. After the very positive response to SNPChiMp (bioinformatics.tecnoparco.org/SNPchimp), where we store and provide tools for the 6 major livestock species and more than 20 SNP arrays, we are now extending our family of tools to plant species. SNPGreen ( bioinformatics.tecnoparco.org/SNPgreen) currently includes 3 SNP arrays for Rice and Maize

    The chiral 1:2 adduct (S)S(S)C(-)589-ethyl 2-phenylbutyl sulphide-mercury (II) chloride:(-)589[(S)S(S)C-Et(2-PhBu)S.(HgCl2)2]. Stereoselective synthesis, asymmetric oxidation, crystal and molecular structure and circular dichroism spectra

    Get PDF
    Optically active (-)589ethyl (S)-2-phenylbutyl thioether, (-)(S)C-Et(PhBu)S (I), and its new diastereoisomeric mercury (II) chloride adduct, 1:2, (-)[(S)S(S)C-Et(PhBu)S.(HgCl2)2]2, (II) were stereoselectively synthesized; the absorbance (UV) and circular dichroism (CD) spectra were measured and the crystal and molecular structure of complex (II) was determined by single-crystal X-ray diffraction. Two different Hg centres are present whose coordination environments are built by two short bonds to chloride ligands in one case, and to one chloride and one sulphur in the other one. These originate digonal units. Electroneutrality is achieved by a further chlorine, which can be considered prevalently ionic and bonded to the two Hg centres, forming square bridging systems nearly perpendicular to the digonal molecules. The coordination polyhedra can be interpreted as 2 + 4 tetragonally-compressed octahedra with the four longer contacts lying in the equatorial plane. IR spectroscopic data are consistent with the presence of one bent and one linear Cl–Hg–Cl moiety. The absolute configurations at both stereogenic centres of the formed diastereoisomeric complex (II) are (S). The (S)S absolute configuration at the stereogenic sulphur atom bonded to the mercury(II) atom in complex (II) has been related with the negative Cotton effect assigned in its circular dichroism (CD) spectrum to a charge-transfer transition at ca. 230 nm. The stereoselective oxidation of (I) and (II) with hydrogen peroxide, induced by the stereogenic carbon atom (S)C of the enantiopure sulphide, gave (-)598ethyl (S)C-2-phenylbutyl(S)S-sulphoxide, (-)598[(S)S(S)C-Et(PhBu)SO], (III), having 18.1% de. Oxidations carried out in the presence of a 200 molar excess of mercury(II) chloride gave (-)598ethyl (S)C-2-phenylbutyl(R)S-sulphoxide, (-) 598[(R)S(S)C-Et(PhBu)SO], (IV) with 31% de, showing the cooperative influence of mercury(II) chloride on the selectivity of the oxidation reaction
    • 

    corecore