112 research outputs found
5,5,7,7-Tetrametyl-6,7-dihydro-5H-dibenzo[c,e]azepine
5,5,7,7-Tetrametyl-6,7-dihydro-5H-dibenzo[c,e]azepine has been synthesized as a possible pro-chiral (or tropos) unit for the construction of a chiral catalyst and as a molecular chirality sensor for the absolute configuration assignment by chiroptical spectroscopy. A straightforward synthetic strategy for the preparation of the title compound in high overall yield through sequential addition of the four methyl groups on benzylic positions has been described. A VT-NMR study was used to determine the rotational barrier of the aryl-aryl bond in this biphenylazepine, revealing its torsional flexibility at room temperature, which makes the biphenylazepine suitable as both a chirality probe and a tropos moiety in chiral ligands
Copper/Zinc Superoxide Dismutase from the Crocodile Icefish Chionodraco hamatus: Antioxidant Defense at Constant Sub-Zero Temperature
In the present study, we describe the purification and molecular characterization of Cu,Zn superoxide dismutase (SOD) from Chionodraco hamatus, an Antarctic teleost widely distributed in many areas of the Ross Sea that plays a pivotal role in the Antarctic food chain. The primary sequence was obtained using biochemical and molecular biology approaches and compared with Cu,Zn SODs from other organisms. Multiple sequence alignment using the amino acid sequence revealed that Cu,Zn SOD showed considerable sequence similarity with its orthologues from various vertebrate species, but also some specific substitutions directly linked to cold adaptation. Phylogenetic analyses presented the monophyletic status of Antartic Teleostei among the Perciformes, confirming the erratic differentiation of these proteins and concurring with the theory of the "unclock-like" behavior of Cu,Zn SOD evolution. Expression of C. hamatus Cu,Zn SOD at both the mRNA and protein levels were analyzed in various tissues, highlighting the regulation of gene expression related to environmental stress conditions and also animal physiology. The data presented are the first on the antioxidant enzymes of a fish belonging to the Channichthyidae family and represent an important starting point in understanding the antioxidant systems of these organisms that are subject to constant risk of oxidative stress
Human VDAC pseudogenes: an emerging role for VDAC1P8 pseudogene in acute myeloid leukemia
Background Voltage-dependent anion selective channels (VDACs) are the most abundant mitochondrial outer
membrane proteins, encoded in mammals by three genes, VDAC1, 2 and 3, mostly ubiquitously expressed. As ’mitochondrial
gatekeepers’, VDACs control organelle and cell metabolism and are involved in many diseases. Despite
the presence of numerous VDAC pseudogenes in the human genome, their significance and possible role in VDAC
protein expression has not yet been considered.
Results We investigated the relevance of processed pseudogenes of human VDAC genes, both in physiological and
in pathological contexts. Using high-throughput tools and querying many genomic and transcriptomic databases,
we show that some VDAC pseudogenes are transcribed in specific tissues and pathological contexts. The obtained
experimental data confirm an association of the VDAC1P8 pseudogene with acute myeloid leukemia (AML).
Conclusions Our in-silico comparative analysis between the VDAC1 gene and its VDAC1P8 pseudogene, together
with experimental data produced in AML cellular models, indicate a specific over-expression of the VDAC1P8 pseudogene
in AML, correlated with a downregulation of the parental VDAC1 gene.
Keywords Pseudogene, Voltage-dependent anion selective channels (VDAC
New insights on the functional role of URG7 in the cellular response to ER stress.
BACKGROUND INFORMATION:
Up-regulated Gene clone 7 (URG7) is an ER resident protein, whose expression is upregulated in the presence of hepatitis B virus X antigen (HBxAg) during HBV infection. In virus-infected hepatocytes, URG7 shows an anti-apoptotic activity due to the PI3K/AKT signaling activation, does not seem to have tumorigenic properties, but it appears to promote the development and progression of fibrosis. However, the molecular mechanisms underlying URG7 activity remain largely unknown.
RESULTS:
To shed light on URG7 activity, we first analyzed its interactome in HepG2 transfected cells: this analysis suggests that URG7 could have a role in affecting protein synthesis, folding and promoting proteins degradation. Moreover, keeping into account its subcellular localization in the ER and that several viral infections give rise to ER stress, a panel of experiments was performed to evaluate a putative role of URG7 in ER stress. Our main results demonstrate that in ER stressed cells URG7 is able to modulate the expression of Unfolded Protein Response (UPR) markers toward survival outcomes, upregulating GRP78 protein and downregulating the pro-apoptotic protein CHOP. Furthermore, URG7 reduces the ER stress by decreasing the amount of unfolded proteins, by increasing both the total protein ubiquitination and the AKT activation and reducing caspase 3 activation.
CONCLUSIONS:
All together these data suggest that URG7 plays a pivotal role as a reliever of ER stress-induced apoptosis.
SIGNIFICANCE:
This is the first characterization of URG7 activity under ER stress conditions. The results presented here will help to hypothesize new strategies to counteract the antiapoptotic activity of URG7 in the context of the viral infection. This article is protected by copyright. All rights reserved
The hepatitis B x antigen anti-apoptotic effector URG7 is localized to the endoplasmic reticulum membrane
Hepatitis B x antigen up-regulates the liver expression of URG7 that contributes to sustain chronic
virus infection and to increase the risk for hepatocellular carcinoma by its anti-apoptotic activity.
We have investigated the subcellular localization of URG7 expressed in HepG2 cells and determined
its membrane topology by glycosylation mapping in vitro. The results demonstrate that URG7 is
N-glycosylated and located to the endoplasmic reticulum membrane with an Nlumen–Ccytosol orientation.
The results imply that the anti-apoptotic effect of URG7 could arise from the C-terminal
cytosolic tail binding a pro-apoptotic signaling factor and retaining it to the endoplasmic reticulum
membrane
Two novel precursors of the hiv-1 protease inhibitor darunavir target the UPR/proteasome system in human hepatocellular carcinoma cell line HepG2
Background: Several pre-clinical and clinical reports suggest that HIV-1 protease inhibitors, in addition to the antiretroviral properties, possess pleiotropic pharmacological effects including anti-cancer action. Therefore, we investigated the pro-apoptotic activity in tumor cells of two molecules, RDD-19 and RDD-142, which are hydroxyethylamine derivatives’ precursors of darunavir and several HIV-1 protease inhibitors. Methods: Three hepatoma cell lines and one non-pathological cell line were treated with RDD-19 and RDD-142, and cell viability was assessed. The expression levels of several markers for ER stress, autophagy, cellular ubiquitination, and Akt activation were quantified in HepG2 cells treated with RDD-19 and RDD-142 to evaluate apoptotic and non-apoptotic cell death. Results: RDD-19 and RDD-142 showed a greater dose-dependent cytotoxicity towards the hepatic tumor cell line HepG2 compared to the non-pathological hepatic cell line IHH. Both molecules caused two types of cell death, a caspase-dependent apoptosis, which was ascertained by a series of biochemical and morphological assays, and a caspase-independent death that was characterized by the induction of ER stress and autophagy. The strong increase of ubiquitinated proteins inside the cells suggested that the target of these molecules could be the proteasome and in silico molecular docking analysis that was used to support the plausibility of this hypothesis. Furthermore, cells treated with the two compounds displayed decreased levels of p-AKT, which interferes with cell survival and proliferation. Conclusions: These findings demonstrate that two compounds, RDD-19 and RDD-142, have pleiotropic effects and that they may represent promising anticancer candidates
Estimation of the incubation period and generation time of SARS-CoV-2 Alpha and Delta variants from contact tracing data
Quantitative information on epidemiological quantities such as the incubation period and generation time of SARS-CoV-2 variants is scarce. We analyzed a dataset collected during contact tracing activities in the province of Reggio Emilia, Italy, throughout 2021. We determined the distributions of the incubation period for the Alpha and Delta variants using information on negative PCR tests and the date of last exposure from 282 symptomatic cases. We estimated the distributions of the intrinsic generation time using a Bayesian inference approach applied to 9724 SARS-CoV-2 cases clustered in 3545 households where at least one secondary case was recorded. We estimated a mean incubation period of 4.9 days (95% credible intervals, CrI, 4.4-5.4) for Alpha and 4.5 days (95%CrI 4.0-5.0) for Delta. The intrinsic generation time was estimated to have a mean of 7.12 days (95% CrI 6.27-8.44) for Alpha and of 6.52 days (95%CrI 5.54-8.43) for Delta. The household serial interval was 2.43 days (95%CrI 2.29-2.58) for Alpha and 2.74 days (95%CrI 2.62-2.88) for Delta, and the estimated proportion of pre-symptomatic transmission was 48-51% for both variants. These results indicate limited differences in the incubation period and intrinsic generation time of SARS-CoV-2 variants Alpha and Delta compared to ancestral lineages
SARS-CoV-2 transmission patterns in educational settings during the Alpha wave in Reggio-Emilia, Italy
: Different monitoring and control policies have been implemented in schools to minimize the spread of SARS-CoV-2. Transmission in schools has been hard to quantify due to the large proportion of asymptomatic carriers in young individuals. We applied a Bayesian approach to reconstruct the transmission chains between 284 SARS-CoV-2 infections ascertained during 87 school outbreak investigations conducted between March and April 2021 in Italy. Under the policy of reactive quarantines, we found that 42.5% (95%CrI: 29.5-54.3%) of infections among school attendees were caused by school contacts. The mean number of secondary cases infected at school by a positive individual during in-person education was estimated to be 0.33 (95%CrI: 0.23-0.43), with marked heterogeneity across individuals. Specifically, we estimated that only 26.0% (95%CrI: 17.6-34.1%) of students and school personnel who tested positive during in-person education caused at least one secondary infection at school. Positive individuals who attended school for at least 6 days before being isolated or quarantined infected on average 0.49 (95%CrI: 0.14-0.83) secondary cases. Our findings provide quantitative insights on the contribution of school transmission to the spread of SARS-CoV-2 in young individuals. Identifying positive cases within 5 days after exposure to their infector could reduce onward transmission at school by at least 30%
- …