70 research outputs found

    Randomized phase II study investigating pazopanib versus weekly paclitaxel in relapsed or progressive urothelial cancer

    Get PDF
    Purpose: Two previous single-arm trials have drawn conflicting conclusions regarding the activity of pazopanib in urothelial cancers after failure of platinum-based chemotherapy. Patients and Methods: This randomized (1:1) open-label phase II trial compared the efficacy of pazopanib 800 mg orally with paclitaxel (80 mg/m2 days 1, 8, and 15 every 28 days) in the second-line setting. The primary end point was overall survival (OS). Results: Between August 2012 and October 2014, 131 patients, out of 140 planned, were randomly assigned. The study was terminated early on the recommendation of the independent data monitoring committee because of futility. Final analysis after the preplanned number of deaths (n = 110) occurred after a median follow-up of 18 months. One hundred fifteen deaths had occurred at the final data extract presented here. Median OS was 8.0 months for paclitaxel (80% CI, 6.9 to 9.7 months) and 4.7 months for pazopanib (80% CI, 4.2 to 6.4 months). The hazard ratio (HR) adjusted for baseline stratification factors was 1.28 (80% CI, 0.99 to 1.67; one-sided P = .89). Median progression-free survival was 4.1 months for paclitaxel (80% CI, 3.0 to 5.6 months) and 3.1 months for pazopanib (80% CI, 2.7 to 4.6 months; HR, 1.09; 80% CI, 0.85 to 1.40; one-sided P = .67). Discontinuations for toxicity occurred in 7.8% and 23.1% for paclitaxel and pazopanib, respectively. Conclusion: Pazopanib did not have greater efficacy than paclitaxel in the second-line treatment of urothelial cancers. There was a trend toward superior OS for paclitaxel

    Systemic anticancer therapy for urothelial carcinoma: UK oncologists’ perspective

    Get PDF
    Urothelial carcinoma (UC) is a common cancer associated with a poor prognosis in patients with advanced disease. Platinum-based chemotherapy has remained the cornerstone of systemic anticancer treatment for many years, and recent developments in the treatment landscape have improved outcomes. In this review, we provide an overview of systemic treatment for UC, including clinical data supporting the current standard of care at each point in the treatment pathway and author interpretations from a UK perspective. Neoadjuvant cisplatin-based chemotherapy is recommended for eligible patients with muscle-invasive bladder cancer and is preferable to adjuvant treatment. For first-line treatment of advanced UC, platinum-eligible patients should receive cisplatin- or carboplatin-based chemotherapy, followed by avelumab maintenance in those without disease progression. Among patients unable to receive platinum-based chemotherapy, immune checkpoint inhibitor (ICI) treatment is an option for those with programmed death ligand 1 (PD-L1)–positive tumours. Second-line or later treatment options depend on prior treatment, and enfortumab vedotin is preferred after prior ICI and chemotherapy, although availability varies between countries. Additional options include rechallenge with platinum-based chemotherapy, an ICI, or non–platinum-based chemotherapy. Areas of uncertainty include the optimal number of first-line chemotherapy cycles for advanced UC and the value of PD-L1 testing for UC

    Key issues in recruitment to randomised controlled trials with very different interventions: a qualitative investigation of recruitment to the SPARE trial (CRUK/07/011)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recruitment to randomised controlled trials (RCTs) with very different treatment arms is often difficult. The ProtecT (Prostate testing for cancer and Treatment) study successfully used qualitative research methods to improve recruitment and these methods were replicated in five other RCTs facing recruitment difficulties. A similar qualitative recruitment investigation was undertaken in the SPARE (Selective bladder Preservation Against Radical Excision) feasibility study to explore reasons for low recruitment and attempt to improve recruitment rates by implementing changes suggested by qualitative findings.</p> <p>Methods</p> <p>In Phase I of the investigation, reasons for low levels of recruitment were explored through content analysis of RCT documents, thematic analysis of interviews with trial staff and recruiters, and conversation analysis of audio-recordings of recruitment appointments. Findings were presented to the trial management group and a plan of action was agreed. In Phase II, changes to design and conduct were implemented, with training and feedback provided for recruitment staff.</p> <p>Results</p> <p>Five key challenges to trial recruitment were identified in Phase I: (a) Investigators and recruiters had considerable difficulty articulating the trial design in simple terms; (b) The recruitment pathway was complicated, involving staff across different specialties/centres and communication often broke down; (c) Recruiters inadvertently used 'loaded' terminology such as 'gold standard' in study information, leading to unbalanced presentation; (d) Fewer eligible patients were identified than had been anticipated; (e) Strong treatment preferences were expressed by potential participants and trial staff in some centres. In Phase II, study information (patient information sheet and flowchart) was simplified, the recruitment pathway was focused around lead recruiters, and training sessions and 'tips' were provided for recruiters. Issues of patient eligibility were insurmountable, however, and the independent Trial Steering Committee advised closure of the SPARE trial in February 2010.</p> <p>Conclusions</p> <p>The qualitative investigation identified the key aspects of trial design and conduct that were hindering recruitment, and a plan of action that was acceptable to trial investigators and recruiters was implemented. Qualitative investigations can thus be used to elucidate challenges to recruitment in trials with very different treatment arms, but require sufficient time to be undertaken successfully.</p> <p>Trial Registration</p> <p>CRUK/07/011; <a href="http://www.controlled-trials.com/ISRCTN61126465">ISRCTN61126465</a></p

    Development of a framework to improve the process of recruitment to randomised controlled trials (RCTs):the SEAR (Screened, Eligible, Approached, Randomised) framework

    Get PDF
    BackgroundResearch has shown that recruitment to trials is a process that stretches from identifying potentially eligible patients, through eligibility assessment, to obtaining informed consent. The length and complexity of this pathway means that many patients do not have the opportunity to consider participation. This article presents the development of a simple framework to document, understand and improve the process of trial recruitment. MethodsEight RCTs integrated a QuinteT Recruitment Intervention (QRI) into the main trial, feasibility or pilot study. Part of the QRI required mapping the patient recruitment pathway using trial-specific screening and recruitment logs. A content analysis compared the logs to identify aspects of the recruitment pathway and process that were useful in monitoring and improving recruitment. Findings were synthesised to develop an optimised simple framework that can be used in a wide range of RCTs. ResultsThe eight trials recorded basic information about patients screened for trial participation and randomisation outcome. Three trials systematically recorded reasons why an individual was not enrolled in the trial, and further details why they were not eligible or approached, or declined randomisation. A framework to facilitate clearer recording of the recruitment process and reasons for non-participation was developed: SEAR andndash; Screening, to identify potentially eligible trial participants; Eligibility, assessed against the trial protocol inclusion/exclusion criteria; Approach, the provision of oral and written information and invitation to participate in the trial, and Randomised or not, with the outcome of randomisation or treatment received. ConclusionsThe SEAR framework encourages the collection of information to identify recruitment obstacles and facilitate improvements to the recruitment process. SEAR can be adapted to monitor recruitment to most RCTs, but is likely to add most value in trials where recruitment problems are anticipated or evident. Further work to test it more widely is recommended.</p

    Diagnosis, treatment and survival from bladder, upper urinary tract and urethral cancers: Real world findings from NHS England between 2013 and 2019

    Get PDF
    Objective We report NHS England data for patients with bladder cancer (BC), upper tract urothelial cancer (UTUC: renal pelvic and ureteric), and urethral cancers from 2013 to 2019. Materials and Methods Hospital episode statistics, waiting times, and cancer registrations were extracted from NHS Digital. Results Registrations included 128 823 individuals with BC, 16 018 with UTUC, and 2533 with urethral cancer. In 2019, 150 816 persons were living with a diagnosis of BC, of whom 113 067 (75.0%) were men, 85 117 (56.5%) were aged >75 years, and 95 553 (91.7%) were Caucasian. Incidence rates were stable (32.7–34.3 for BC, 3.9–4.2 for UTUC and 0.6–0.7 for urethral cancer per 100 000 population). Most patients 52 097 (mean [range] 41.3% [40.7–42.0%]) were referred outside the 2-week-wait pathway and 15 340 (mean [range] 12.2% [11.7–12.6%]) presented as emergencies. Surgery, radiotherapy, chemotherapy, or multimodal treatment use varied with disease stage, patient factors and Cancer Alliance. Between 27% and 29% (n = 6616) of muscle-invasive BCs did not receive radical treatment. Survival rates reflected stage, grade, location, and tumour histology. Overall survival rates did not improve over time (relative change: 0.97, 95% confidence interval 0.97–0.97) at 2 years in contrast to other cancers. Conclusion The diagnostic pathway for BC needs improvement. Increases in survival might be delivered through greater use of radical treatment. NHS Digital data offers a population-wide picture of this disease but does not allow individual outcomes to be matched with disease or patient features and key parameters can be missing or incomplete

    Pan-AKT inhibitor capivasertib with docetaxel and prednisolone in metastatic castration-resistant prostate cancer: a randomized, placebo-controlled phase II trial (ProCAID)

    Get PDF
    Purpose: Capivasertib is a pan-AKT inhibitor. Preclinical data indicate activity in metastatic castration-resistant prostate cancer (mCRPC) and synergism with docetaxel. Patients and Methods: ProCAID was a placebo controlled randomized phase II trial in mCRPC. Patients received up to ten 21-day cycles of docetaxel (75 mg/m2 intravenous, day 1) and prednisolone (5 mg twice daily, oral, day 1-21) and were randomly assigned (1:1) to oral capivasertib (320 mg twice daily, 4 days on/3 days off, from day 2 each cycle), or placebo, until disease progression. Treatment allocation used minimization factors: bone metastases; visceral metastases; investigational site; and prior abiraterone or enzalutamide. The primary objective, by intention to treat, determined if the addition of capivasertib prolonged a composite progression-free survival (cPFS) end point that included prostate-specific antigen progression events. cPFS and overall survival (OS) were also assessed by composite biomarker subgroup for PI3K/AKT/PTEN pathway activation status. Results: One hundred and fifty patients were enrolled. Median cPFS was 7.03 (95% CI, 6.28 to 8.25) and 6.70 months (95% CI, 5.52 to 7.36) with capivasertib and placebo respectively (hazard ratio [HR], 0.92; 80% CI, 0.73 to 1.16; one-sided P = .32). Median OS was 31.15 (95% CI, 20.07 to not reached) and 20.27 months (95% CI, 17.51 to 24.18), respectively (HR, 0.54; 95% CI, 0.34 to 0.88; two-sided P = .01). cPFS and OS results were consistent irrespective of PI3K/AKT/PTEN pathway activation status. Grade III-IV adverse events were equivalent between arms (62.2%). The most common adverse events of any grade deemed related to capivasertib were diarrhea, fatigue, nausea, and rash. Conclusion: The addition of capivasertib to chemotherapy did not extend cPFS in mCRPC irrespective of PI3K/AKT/PTEN pathway activation status. The observed OS result (a secondary end point) will require prospective validation in future studies to address potential for bias

    The Patient Deficit Model Overturned: a qualitative study of patients' perceptions of invitation to participate in a randomized controlled trial comparing selective bladder preservation against surgery in muscle invasive bladder cancer (SPARE, CRUK/07/011)

    Get PDF
    BACKGROUND: Evidence suggests that poor recruitment into clinical trials rests on a patient ‘deficit’ model – an inability to comprehend trial processes. Poor communication has also been cited as a possible barrier to recruitment. A qualitative patient interview study was included within the feasibility stage of a phase III non-inferiority Randomized Controlled Trial (RCT) (SPARE, CRUK/07/011) in muscle invasive bladder cancer. The aim was to illuminate problems in the context of randomization. METHODS: The qualitative study used a ‘Framework Analysis’ that included ‘constant comparison’ in which semi-structured interviews are transcribed, analyzed, compared and contrasted both between and within transcripts. Three researchers coded and interpreted data. RESULTS: Twenty-four patients agreed to enter the interview study; 10 decliners of randomization and 14 accepters, of whom 2 subsequently declined their allocated treatment. The main theme applying to the majority of the sample was confusion and ambiguity. There was little indication that confusion directly impacted on decisions to enter the SPARE trial. However, confusion did appear to impact on ethical considerations surrounding ‘informed consent’, as well as cause a sense of alienation between patients and health personnel. Sub-optimal communication in many guises accounted for the confusion, together with the logistical elements of a trial that involved treatment options delivered in a number of geographical locations. CONCLUSIONS: These data highlight the difficulty of providing balanced and clear trial information within the UK health system, despite best intentions. Involvement of multiple professionals can impact on communication processes with patients who are considering participation in RCTs. Our results led us to question the ‘deficit’ model of patient behavior. It is suggested that health professionals might consider facilitating a context in which patients feel fully included in the trial enterprise and potentially consider alternatives to randomization where complex interventions are being tested. TRIAL REGISTRATION: ISRCTN6112646

    Abiraterone acetate plus prednisolone for metastatic patients starting hormone therapy: 5-year follow-up results from the STAMPEDE randomised trial (NCT00268476)

    Get PDF
    Abiraterone acetate plus prednisolone (AAP) previously demonstrated improved survival in STAMPEDE, a multiarm, multistage platform trial in men starting long-term hormone therapy for prostate cancer. This long-term analysis in metastatic patients was planned for 3 years after the first results. Standard-of-care (SOC) was androgen deprivation therapy. The comparison randomised patients 1:1 to SOC-alone with or without daily abiraterone acetate 1000 mg + prednisolone 5 mg (SOC + AAP), continued until disease progression. The primary outcome measure was overall survival. Metastatic disease risk group was classified retrospectively using baseline CT and bone scans by central radiological review and pathology reports. Analyses used Cox proportional hazards and flexible parametric models, accounting for baseline stratification factors. One thousand and three patients were contemporaneously randomised (November 2011 to January 2014): median age 67 years; 94% newly-diagnosed; metastatic disease risk group: 48% high, 44% low, 8% unassessable; median PSA 97 ng/mL. At 6.1 years median follow-up, 329 SOC-alone deaths (118 low-risk, 178 high-risk) and 244 SOC + AAP deaths (75 low-risk, 145 high-risk) were reported. Adjusted HR = 0.60 (95% CI: 0.50-0.71; P = 0.31 × 10−9) favoured SOC + AAP, with 5-years survival improved from 41% SOC-alone to 60% SOC + AAP. This was similar in low-risk (HR = 0.55; 95% CI: 0.41-0.76) and high-risk (HR = 0.54; 95% CI: 0.43-0.69) patients. Median and current maximum time on SOC + AAP was 2.4 and 8.1 years. Toxicity at 4 years postrandomisation was similar, with 16% patients in each group reporting grade 3 or higher toxicity. A sustained and substantial improvement in overall survival of all metastatic prostate cancer patients was achieved with SOC + abiraterone acetate + prednisolone, irrespective of metastatic disease risk group
    corecore