29 research outputs found

    Quantum gravity at a TeV and the renormalization of Newton's constant

    Get PDF
    We examine whether renormalization effects can cause NewtonÂżs constant to change dramatically with energy, perhaps even reducing the scale of quantum gravity to the TeV region without the introduction of extra dimensions. We examine a model that realizes this possibility and describe experimental signatures from the production of small black holes

    Trace Anomaly of Dilaton Coupled Scalars in Two Dimensions

    Get PDF
    Conformal scalar fields coupled to the dilaton appear naturally in two-dimensional models of black hole evaporation. We calculate their trace anomaly. It follows that an RST-type counterterm appears naturally in the one-loop effective action.Comment: 11 pages, LaTeX2e; submitted to Phys. Rev. Lett., minor change

    One-loop λϕ4\lambda \phi^4 theory in Robertson-Walker spacetimes: adiabatic regularization and analytic approximation

    Full text link
    The renormalization of a scalar field theory with a quartic self-coupling (a λϕ4\lambda \phi^4 theory) via adiabatic regularization in a general Robertson-Walker spacetime is discussed. The adiabatic counterterms are presented in a way that is most conducive to numerical computations. A variation of the adiabatic regularization method is presented which leads to analytic approximations for the energy-momentum tensor of the field and the quantum contribution to the effective mass of the mean field. Conservation of the energy-momentum tensor for the field is discussed and it is shown that the part of the energy-momentum tensor which depends only on the mean field is not conserved but the full renormalized energy-momentum tensor is conserved as expected and required by the semiclassical Einstein's equation. It is also shown that if the analytic approximations are used then the resulting approximate energy-momentum tensor is conserved. This allows a self-consistent backreaction calculation to be performed using the analytic approximations. The usefulness of the approximations is discussed.Comment: 12 pages in revtex, and no figure

    Non-Extreme and Ultra-Extreme Domain Walls and Their Global Space-Times

    Get PDF
    Non-extreme walls (bubbles with two insides) and ultra-extreme walls (bubbles of false vacuum decay) are discussed. Their respective energy densities are higher and lower than that of the corresponding extreme (supersymmetric), planar domain wall. These singularity free space-times exhibit non-trivial causal structure analogous to certain non-extreme black holes. We focus on anti-de~Sitter--Minkowski walls and comment on Minkowski--Minkowski walls with trivial extreme limit, as well as walls adjacent to de~Sitter space-times with no extreme limit.Comment: Revised version, 4 pages of REVTEX, UPR-546-T/Rev. Two figures not included. This version contains further elaboration of the space-time causal structur

    Cauchy Horizons, Thermodynamics and Closed Time-like Curves in Planar Supersymmetric Space-times

    Full text link
    We study geodesically complete, singularity free space-times induced by supersymmetric planar domain walls interpolating between Minkowski and anti-de Sitter (AdS4AdS_4) vacua. A geodesically complete space-time without closed time-like curves includes an infinite number of semi-infinite Minkowski space-times, separated from each other by a region of AdS4AdS_4 space-time. These space-times are closely related to the extreme Reissner Nordstr\" om (RN) black hole, exhibiting Cauchy horizons with zero Hawking temperature, but in contrast to the RN black hole there is no entropy. Another geodesically complete extension with closed time-like curves involves space-times connecting a finite number of semi-infinite Minkowski space-times.Comment: 11 pages, 1 figure appended, phyzz

    Wave Propagation in Stochastic Spacetimes: Localization, Amplification and Particle Creation

    Get PDF
    Here we study novel effects associated with electromagnetic wave propagation in a Robertson-Walker universe and the Schwarzschild spacetime with a small amount of metric stochasticity. We find that localization of electromagnetic waves occurs in a Robertson-Walker universe with time-independent metric stochasticity, while time-dependent metric stochasticity induces exponential instability in the particle production rate. For the Schwarzschild metric, time-independent randomness can decrease the total luminosity of Hawking radiation due to multiple scattering of waves outside the black hole and gives rise to event horizon fluctuations and thus fluctuations in the Hawking temperature.Comment: 26 pages, 1 Postscript figure, submitted to Phys. Rev. D on July 29, 199

    The Magnitude of Androgen Receptor Positivity in Breast Cancer Is Critical for Reliable Prediction of Disease Outcome

    Get PDF
    Purpose: Consensus is lacking regarding the androgen receptor (AR) as a prognostic marker in breast cancer. The objectives of this study were to comprehensively review the literature on AR prognostication and determine optimal criteria for AR as an independent predictor of breast cancer survival. Experimental Design: AR positivity was assessed by immunostaining in two clinically validated primary breast cancer cohorts [training cohort, n = 219; validation cohort, n = 418; 77% and 79% estrogen receptor alpha (ERα) positive, respectively]. The optimal AR cut-point was determined by ROC analysis in the training cohort and applied to both cohorts. Results: AR was an independent prognostic marker of breast cancer outcome in 22 of 46 (48%) previous studies that performed multivariate analyses. Most studies used cut-points of 1% or 10% nuclear positivity. Herein, neither 1% nor 10% cut-points were robustly prognostic. ROC analysis revealed that a higher AR cut-point (78% positivity) provided optimal sensitivity and specificity to predict breast cancer survival in the training (HR, 0.41; P = 0.015) and validation (HR, 0.50; P = 0.014) cohorts. Tenfold cross-validation confirmed the robustness of this AR cut-point. Patients with ERα-positive tumors and AR positivity ≄78% had the best survival in both cohorts (P 0.87) had the best outcomes (P < 0.0001). Conclusions: This study defines an optimal AR cut-point to reliably predict breast cancer survival. Testing this cut-point in prospective cohorts is warranted for implementation of AR as a prognostic factor in the clinical management of breast cancer

    Progesterone receptor modulates ERα action in breast cancer.

    Get PDF
    Progesterone receptor (PR) expression is used as a biomarker of oestrogen receptor-α (ERα) function and breast cancer prognosis. Here we show that PR is not merely an ERα-induced gene target, but is also an ERα-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERα to direct ERα chromatin binding events within breast cancer cells, resulting in a unique gene expression programme that is associated with good clinical outcome. Progesterone inhibited oestrogen-mediated growth of ERα(+) cell line xenografts and primary ERα(+) breast tumour explants, and had increased anti-proliferative effects when coupled with an ERα antagonist. Copy number loss of PGR, the gene coding for PR, is a common feature in ERα(+) breast cancers, explaining lower PR levels in a subset of cases. Our findings indicate that PR functions as a molecular rheostat to control ERα chromatin binding and transcriptional activity, which has important implications for prognosis and therapeutic interventions.We would like to acknowledge the support of the University of Cambridge, Cancer Research UK and Hutchison Whampoa Limited. Research reported in this manuscript was supported by the National Cancer Institute of the National Institutes of Health under award number 5P30CA142543 (to UT Southwestern) and Department of Defense grants W81XWH-12-1-0288-03 (GVR). W.D.T. is supported by grants from the National Health and Medical Research Council of Australia (ID 1008349; ID 1084416) and Cancer Australia (ID 627229) T.E.H held a Fellowship Award from the US Department of Defense Breast Cancer Research Program (BCRP; #W81XWH-11-1-0592) and currently is supported by a Florey Fellowship from the Royal Adelaide Hospital Research Foundation. J.S.C is supported by an ERC starting grant and an EMBO Young investigator award.This is the accepted manuscript. The final version is available at www.nature.com/nature/journal/v523/n7560/full/nature14583.htm

    Local and global gravitational aspects of domain wall space-times

    Full text link
    Local and global gravitational effects induced by eternal vacuum domain walls are studied. We concentrate on thin walls between non-equal and non-positive cosmological constants on each side of the wall. These vacuum domain walls fall in three classes depending on the value of their energy density σ\sigma: (1)\ extreme walls with σ=σext\sigma = \sigma_{{\text{ext}}} are planar, static walls corresponding to supersymmetric configurations, (2)\ non-extreme walls with σ=σnon>σext\sigma = \sigma_{{\text{non}}} > \sigma_{{\text{ext}}} correspond to expanding bubbles with observers on either side of the wall being {\em inside\/} the bubble, and (3)\ ultra-extreme walls with σ=σultra<σext\sigma = \sigma_{{\text{ultra}}} < \sigma_{{\text{ext}}} represent the bubbles of false vacuum decay. On the sides with less negative cosmological constant, the extreme, non-extreme, and ultra-extreme walls exhibit no, repulsive, and attractive effective ``gravitational forces,'' respectively. These ``gravitational forces'' are global effects not caused by local curvature. Since the non-extreme wall encloses observers on both sides, the supersymmetric system has the lowest gravitational mass accessable to outside observers. It is conjectured that similar positive mass protection occurs in all physical systems and that no finite negative mass object can exist inside the universe. We also discuss the global space-time structure of these singularity free space-times and point out intriguing analogies with the causal structure of black holes.Comment: UPR-565-T, 26 REVTEX pages, 10 figures available upon reques

    Initial Conditions for Inflation

    Get PDF
    Free scalar fields in de Sitter space have a one-parameter family of states invariant under the de Sitter group, including the standard thermal vacuum. We show that, except for the thermal vacuum, these states are unphysical when gravitational interactions are included. We apply these observations to the quantum state of the inflaton, and find that, at best, dramatic fine tuning is required for states other than the thermal vacuum to lead to observable features in the CMBR anisotropy.Comment: 31 pages, 4 figure
    corecore