2,291 research outputs found

    Quantum fields near phantom-energy `sudden' singularities

    Full text link
    This paper is committed to calculations near a type of future singularity driven by phantom energy. At the singularities considered, the scale factor remains finite but its derivative diverges. The general behavior of barotropic phantom energy producing this singularity is calculated under the assumption that near the singularity such fluid is the dominant contributor. We use the semiclassical formula for renormalized stress tensors of conformally invariant fields in conformally flat spacetimes and analyze the softening/enhancing of the singularity due to quantum vacuum contributions. This dynamical analysis is then compared to results from thermodynamical considerations. In both cases, the vacuum states of quantized scalar and spinor fields strengthen the accelerating expansion near the singularity whereas the vacuum states of vector fields weaken it.Comment: 6 pages RevTe

    Instability of (1+1) de sitter space in the presence of interacting fields

    Get PDF
    Instabilities of two dimensional (1+1) de Sitter space induced by interacting fields are studied. As for the case of flat Minkowski space, several interacting fermion models can be translated into free boson ones and vice versa. It is found that interacting fermion theories do not lead to any instabilities, while the interacting bosonic sine-Gordon model does lead to a breakdown of de Sitter symmetry and to the vanishing of the vacuum expectation value of the S matrix.Comment: 7 page

    Hamiltonian approach to the dynamical Casimir effect

    Full text link
    A Hamiltonian approach is introduced in order to address some severe problems associated with the physical description of the dynamical Casimir effect at all times. For simplicity, the case of a neutral scalar field in a one-dimensional cavity with partially transmitting mirrors (an essential proviso) is considered, but the method can be extended to fields of any kind and higher dimensions. The motional force calculated in our approach contains a reactive term --proportional to the mirrors' acceleration-- which is fundamental in order to obtain (quasi)particles with a positive energy all the time during the movement of the mirrors --while always satisfying the energy conservation law. Comparisons with other approaches and a careful analysis of the interrelations among the different results previously obtained in the literature are carried out.Comment: 4 pages, no figures; version published in Phys. Rev. Lett. 97 (2006) 13040

    Hawking radiation from extremal and non-extremal black holes

    Get PDF
    The relationship between Hawking radiation emitted by non extremal and extremal Reissner Nordstrom black holes is critically analyzed. A careful study of a series of regular collapsing geometries reveals that the stress energy tensor stays regular in the extremal limit and is smoothly connected to that of non extremal black holes. The unexpected feature is that the late time transients which played little role in the non extremal case are necessary to preserve the well defined character of the flux in the extremal case. The known singular behavior of the static energy density of extremal black holes is recovered from our series by neglecting these transients, when performing what turns out to be an illegitimate late time limit. Although our results are derived in two dimensional settings, we explain why they should also apply to higher dimensional black holes.Comment: 18 pages, late

    Very Light Cosmological Scalar Fields from a Tiny Cosmological Constant

    Full text link
    We discuss a mechanism which generates a mass term for a scalar field in an expanding universe. The mass of this field turns out to be generated by the cosmological constant and can be naturally small if protected by a conformal symmetry which is however broken in the gravitational sector. The mass is comparable today to the Hubble time. This scalar field could thus impact our universe today and for example be at the origin of a time variation of the couplings and masses of the parameters of the standard model.Comment: 11 page

    Bubbles created from vacuum fluctuation

    Get PDF
    We show that the bubbles S2×S2S^2\times S^2can be created from vacuum fluctuation in certain De Sitter universe, so the space-time foam-like structure might really be constructed from bubbles of S2×S2S^2\times S^2 in the very early inflating phase of our universe. But whether such foam-like structure persisted during the later evolution of the universe is a problem unsolved now.Comment: 6 page

    Dark Matter from R^2-gravity

    Full text link
    The modification of Einstein gravity at high energies is mandatory from a quantum approach. In this work, we point out that this modification will necessarily introduce new degrees of freedom. We analyze the possibility that these new gravitational states can provide the main contribution to the non-baryonic dark matter of the Universe. Unfortunately, the right ultraviolet completion of gravity is still unresolved. For this reason, we will illustrate this idea with the simplest high energy modification of the Einstein-Hilbert action: R^2-gravity.Comment: 5 pages, 2 figure

    Asymptotic latent solitons, black strings and black branes in f(R)-gravity

    Full text link
    We investigate nonlinear f(R) theories in the Kaluza-Klein models with toroidal compactification of extra dimensions. A point-like matter source has the dust-like equation of state in our three dimensions and nonzero equations of state in the extra dimensions. We obtain solutions of linearized Einstein equations with this matter source taking into account effects of nonlinearity of the model. There are two asymptotic regions where solutions satisfy the gravitational tests at the same level of accuracy as General Relativity. According to these asymptotic regions, there are two classes of solutions. We call these solutions asymptotic latent solitons. The asymptotic latent solitons from the first class generalize the known result of the linear theory. The asymptotic black strings and black branes are particular cases of these asymptotic solutions. The second class of asymptotic solitons exists only in multidimensional nonlinear models. The main feature for both of these classes of solutions is that the matter sources have tension in the extra dimensions.Comment: RevTex4 5 pages, no figure

    Minimal conductivity of rippled graphene with topological disorder

    Full text link
    We study the transport properties of a neutral graphene sheet with curved regions induced or stabilized by topological defects. The proposed model gives rise to Dirac fermions in a random magnetic field and in the random space dependent Fermi velocity induced by the curvature. This last term leads to singular long range correlated disorder with special characteristics. The Drude minimal conductivity at zero energy is found to be inversely proportional to the density of topological disorder, a signature of diffusive behavior.Comment: 12 pages, no figure

    Improved limits on short-wavelength gravitational waves from the cosmic microwave background

    Full text link
    The cosmic microwave background (CMB) is affected by the total radiation density around the time of decoupling. At that epoch, neutrinos comprised a significant fraction of the radiative energy, but there could also be a contribution from primordial gravitational waves with frequencies greater than ~ 10^-15 Hz. If this cosmological gravitational wave background (CGWB) were produced under adiabatic initial conditions, its effects on the CMB and matter power spectrum would mimic massless non-interacting neutrinos. However, with homogenous initial conditions, as one might expect from certain models of inflation, pre big-bang models, phase transitions and other scenarios, the effect on the CMB would be distinct. We present updated observational bounds for both initial conditions using the latest CMB data at small scales from the South Pole Telescope (SPT) in combination with Wilkinson Microwave Anisotropy Probe (WMAP), current measurements of the baryon acoustic oscillations, and the Hubble parameter. With the inclusion of the data from SPT the adiabatic bound on the CGWB density is improved by a factor of 1.7 to 10^6 Omega_gw < 8.7 at the 95% confidence level (C.L.), with weak evidence in favor of an additional radiation component consistent with previous analyses. The constraint can be converted into an upper limit on the tension of horizon-sized cosmic strings that could generate this gravitational wave component, with Gmu < 2 10^-7 at 95% C.L., for string tension Gmu. The homogeneous bound improves by a factor of 3.5 to 10^6 Omega_gw < 1.0 at 95% C.L., with no evidence for such a component from current data.Comment: 5 pages, 3 figure
    corecore