28 research outputs found

    Establishing an algorithm for molecular genetic diagnostics in 127 families with juvenile nephronophthisis

    Get PDF
    Establishing an algorithm for molecular genetic diagnostics in 127 families with juvenile nephronophthisis.BackgroundJuvenile nephronophthisis (NPH1), an autosomal recessive cystic disease of the kidney, represents the most common genetic cause of end-stage renal disease in the first two decades of life. On the basis of identification of the gene (NPHP1) defective in NPH1 and the presence of homozygous deletions of NPHP1 in the majority of NPH1 patients, molecular genetic diagnosis for NPH1 is now possible. Molecular genetic testing offers the only method for definite diagnosis of NPH1 and avoids invasive diagnostic measures like renal biopsy.MethodsWe examined 127 families (204 patients) with the presumed diagnosis of NPH using molecular genetic diagnostic techniques. In 68 families, renal biopsy was performed and was consistent with NPH, and in 61 families, there was more than one affected child ("multiplex families").ResultsIn 74 families (115 patients), there was proof of the diagnosis of NPH1 by detection of a homozygous deletion of the NPHP1 gene, and in 5 families a heterozygous deletion in combination with a point mutation in NPHP1 was demonstrated. Furthermore, for 16 families, NPH1 was excluded with high likelihood by linkage analysis, and for 20 families by detection of heterozygosity for two newly identified polymorphic markers within the deletion region. In 5 of the remaining 12 families, which were noninformative for these markers, fluorescence in situ hybridization did not detect any further heterozygous deletions.ConclusionsThe diagnosis of NPH1 was proven by molecular genetic techniques in 62% of families with one or more children with the presumed diagnosis of NPH. We present evidence that there is a fourth locus for NPH, since only 6 of the 26 multiplex families in whom the diagnosis of NPH1 was excluded were compatible with linkage to other loci for NPH. On the basis of the presented data, we propose an algorithm for molecular genetic diagnostics in NPH

    Overview of the MOSAiC expedition: Snow and sea ice

    Get PDF
    Year-round observations of the physical snow and ice properties and processes that govern the ice pack evolution and its interaction with the atmosphere and the ocean were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice, the ocean, the ecosystem, and biogeochemical processes. The overall aim of the snow and sea ice observations during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice observations of in situ and remote sensing properties of the different surface types over all seasons will help to improve numerical process and climate models and to establish and validate novel satellite remote sensing methods; the linkages to accompanying airborne measurements, satellite observations, and results of numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered in more detail (in observations, remote sensing, and models) to better understand snow-related feedback processes. The ice pack revealed rapid transformations and motions along the drift in all seasons. The number of coupled ice–ocean interface processes observed in detail are expected to guide upcoming research with respect to the changing Arctic sea ice

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Das Persönliche Budget in der Eingliederungshilfe : Möglichkeiten und Grenzen der Selbstbestimmung für Menschen mit geistiger und/oder seelischer Behinderung

    No full text
    Die Bachelorarbeit befasst sich mit den Möglichkeiten und Grenzen der Leistungsform des Persönlichen Budgets nach § 29 SGB IX in der Eingliederungshilfe für erwachsene Menschen. Anhand von Literatur sowie wissenschaftlichen Studien oder offiziellen Drucksachen des Deutschen Bundestages soll die Frage nach den Möglichkeiten und Grenzen der Selbstbestimmung, insbesondere für Personen mit geistigen und/oder seelischen Beeinträchtigungen, geklärt werden. Dabei wird die Hilfeform sowie –gewährung in ihrem Konzept und sozialrechtlichem Rahmen analysiert sowie beschrieben - unter stetiger Beachtung des übergeordneten Zieles der Selbstbestimmung für Menschen mit Behinderungen

    Visual panoramic photographs of the surface conditions during the MOSAiC campaign 2019/20

    No full text
    Panoramic photographs of the surface conditions around the icebreaker RV Polarstern were recorded during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) between 20 October 2019 and 12 October 2020. The photographs were taken with a digital rotating scanning camera (Seitz, Switzerland) based on a Canon 3-linear RGB sensor and using an operational software system by Panomax (Switzerland). The camera covers a full round view (360°) and was mounted above the crow's nest in approx. 33m above sea level. The camera worked without interruptions over the entire expedition. Each photo consists of 15680x2048 pixels. The recording of a single panorama took, depending on light conditions, up to 18 minutes. The recording interval was 20 minutes (72 photos per day). All times are given in UTC and camera times are corrected to the GPS time stamp

    Electromagnetic induction raw data (EM Bird) in the Transpolar Drift during MOSAiC 2019/2020, Leg 1 - Leg 4

    No full text
    Raw electromagnetic induction (EM) data was obtained during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition using the helicopters from R/V Polarstern and R/V Akademik Fedorov between October 2019 and September 2020. The data was gathered in the Transpolar Drift on spatial scales up to 80 km distance from the position of the ships
    corecore