47 research outputs found

    High finesse microfiber knot resonators made from double-ended tapered fibers

    Get PDF

    Modal noise mitigation in a photonic lantern fed near-IR spectrograph

    Get PDF
    Recently we have demonstrated the potential of a hybrid astrophotonic device, consisting of a multi-core fiber photonic lantern and a 3D waveguide reformatting component, to efficiently reformat the multimode point spread function of a telescope to a diffracted limited pseudo-slit. Here, we report on an investigation into the potential of this device to mitigate modal noise-one of the main hurdles of multi-mode fiber-fed spectrographs. The modal noise performance of the photonic reformatter and other fiber feeds was assessed using a bench-Top spectrograph based on an echelle grating. In a first method of modal noise quantification, we used broadband light as the input, and assessed the modal noise performance based on the variations in the normalized spectrum as the input coupling to the fiber feed is varied. In a second method, we passed the broadband light through an etalon to generate a source with spectrally narrow peaks. We then used the spectral stability of these peaks as the input coupling to the fiber feed was varied as a proxy for the modal noise. Using both of these approaches we found that the photonic reformatter could significantly reduce modal noise compared to the multi-mode fiber feed, demonstrating the potential of photonic reformatters to mitigate modal noise for applications such as near-IR radial velocity measurements of M-dwarf stars. </p

    Multi-core fibre-fed integral field spectrograph (MCIFU) IV:The fiber link

    Get PDF
    The Multi-Core Integral-Field Unit (MCIFU) is a diffraction-limited near-infrared integral-field spectrograph designed to detect and characterise exoplanets and disks in combination with extreme adaptive optics (xAO) instruments. It has been developed by an extended consortium as an experimental path finder for medium resolution spectroscopic upgrades for xAO systems. To allow it to achieve its goals we manufactured a fibre link system composed of a custom integrated fiber, with 3D printed microlenses and an ultrafast laser inscribed reformatter. Here we detail the specific requirements of the fibre link, from its design parameters, through its manufacture the laboratory performance and discuss upgrades for the future. © 2020 SPIE.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore