309 research outputs found

    Model-based exploration of linking between vowel articulatory space and acoustic space

    Get PDF
    While the acoustic vowel space has been extensively studied in previous research, little is known about the high-dimensional articulatory space of vowels. The articulatory imaging techniques are limited to tracking only a few key articulators, leaving the rest of the articulators unmonitored. In the present study, we attempted to develop a detailed articulatory space obtained by training a 3D articulatory synthesizer to learn eleven British English vowels. An analysis-by-synthesis strategy was used to acoustically optimize vocal tract parameters that represent twenty articulatory dimensions. The results show that tongue height and retraction, larynx location and lip roundness are the most perceptually distinctive articulatory dimensions. Yet, even for these dimensions, there is a fair amount of articulatory overlap between vowels, unlike the fine-grained acoustic space. This method opens up the possibility of using modelling to investigate the link between speech production and perception

    Influence of the substrate-induced strain and irradiation disorder on the Peierls transition in TTF-TCNQ microdomains

    Full text link
    The influence of the combined effects of substrate-induced strain, finite size and electron irradiation-induced defects have been studied on individual micron-sized domains of the organic charge transfer compound tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) by temperature-dependent conductivity and current-voltage measurements. The individual domains have been isolated by focused ion beam etching and electrically contacted by focused ion and electron beam induced deposition of metallic contacts. The temperature-dependent conductivity follows a variable range hopping behavior which shows a crossover of the exponent as the Peierls transition is approached. The low temperature behavior is analyzed within the segmented rod model of Fogler, Teber and Shklowskii, as originally developed for a charge-ordered quasi one-dimensional electron crystal. The results are compared with data obtained on as-grown and electron irradiated epitaxial TTF-TCNQ thin films of the two-domain type

    Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries

    No full text
    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate

    A Novel Modular Antigen Delivery System for Immuno Targeting of Human 6-sulfo LacNAc-Positive Blood Dendritic Cells (SlanDCs)

    Get PDF
    Previously, we identified a major myeloid-derived proinflammatory subpopulation of human blood dendritic cells which we termed slanDCs (e.g. Schäkel et al. (2006) Immunity 24, 767-777). The slan epitope is an O-linked sugar modification (6-sulfo LacNAc, slan) of P-selectin glycoprotein ligand-1 (PSGL-1). As slanDCs can induce neoantigen-specific CD4+ T cells and tumor-reactive CD8+ cytotoxic T cells, they appear as promising targets for an in vivo delivery of antigens for vaccination. However, tools for delivery of antigens to slanDCs were not available until now. Moreover, it is unknown whether or not antigens delivered via the slan epitope can be taken up, properly processed and presented by slanDCs to T cells.Single chain fragment variables were prepared from presently available decavalent monoclonal anti-slan IgM antibodies but failed to bind to slanDCs. Therefore, a novel multivalent anti-slanDC scaffold was developed which consists of two components: (i) a single chain bispecific recombinant diabody (scBsDb) that is directed on the one hand to the slan epitope and on the other hand to a novel peptide epitope tag, and (ii) modular (antigen-containing) linker peptides that are flanked at both their termini with at least one peptide epitope tag. Delivery of a Tetanus Toxin-derived antigen to slanDCs via such a scBsDb/antigen scaffold allowed us to recall autologous Tetanus-specific memory T cells.In summary our data show that (i) the slan epitope can be used for delivery of antigens to this class of human-specific DCs, and (ii) antigens bound to the slan epitope can be taken up by slanDCs, processed and presented to T cells. Consequently, our novel modular scaffold system may be useful for the development of human vaccines
    • …
    corecore