807 research outputs found

    Bumblebee electric charge stimulates floral volatile emissions in Petunia integrifolia but not in Antirrhinum majus

    Get PDF
    The timing of volatile organic compound (VOC) emission by flowering plants often coincides with pollinator foraging activity. Volatile emission is often considered to be paced by environmental variables, such as light intensity, and/or by circadian rhythmicity. The question arises as to what extent pollinators themselves provide information about their presence, in keeping with their long co-evolution with flowering plants. Bumblebees are electrically charged and provide electrical stimulation when visiting plants, as measured via the depolarisation of electric potential in the stem of flowers. Here, we test the hypothesis that the electric charge of foraging bumblebees increases the floral volatile emissions of bee pollinated plants. We investigate the change in VOC emissions of two bee-pollinated plants (Petunia integrifolia and Antirrhinum majus) exposed to the electric charge typical of foraging bumblebees. P. integrifolia slightly increases its emissions of a behaviorally and physiologically active compound in response to visits by foraging bumblebees, presenting on average 121 pC of electric charge. We show that for P. integrifolia, strong electrical stimulation (600-700 pC) promotes increased volatile emissions, but this is not found when using weaker electrical charges more representative of flying pollinators (100 pC). Floral volatile emissions of A. majus were not affected by either strong (600-700 pC) or weak electric charges (100 pC). This study opens a new area of research whereby the electrical charge of flying insects may provide information to plants on the presence and phenology of their pollinators. As a form of electroreception, this sensory process would bear adaptive value, enabling plants to better ensure that their attractive chemical messages are released when a potential recipient is present

    Recent progress in the synthesis of homotropane alkaloids adaline, euphococcinine and N-methyleuphococcinine

    Get PDF
    The 9-azabicyclo[3.3.1]nonane ring system is present in several insect- and plant-derived alkaloids. (−)-Adaline (1) and (+)-euphococcinine (2), found in secretions of Coccinelid beetles, and (+)-N-methyleuphococcinine (3), isolated from the Colorado blue spruce Picea pungens, are members of this alkaloid family. Their unique bicyclic system with a quaternary stereocenter, and the potent biological activity exerted by these homotropane alkaloids, make them attractive synthetic targets. This work aims briefly to review the chemical ecology of Adalia bipunctata and the recent methodologies to obtain adaline (1), euphococcinine (2), and N-methyleuphococcinine (3)

    Nitrogen pair-induced temperature insensitivity of the band gap of GaNSb alloys

    Get PDF
    The temperature dependence of the band gap of GaN x Sb1−x films with x ≤ 1.3% has been studied in the 1.1–3.3 m (0.35–1.1 eV) range using infrared absorption spectroscopy between 4.2 and 300 K. As with other dilute nitride semiconductors, the temperature dependence of the band gap is reduced by alloying with nitrogen when compared to the host binary compound. However, for GaNSb, the smallest variation of the band gap with temperature is observed for samples with the lowest N content for which the band gap is almost totally insensitive to temperature changes. This contrasts with the more widely studied GaN x As1−x alloys in which the band gap variation with temperature decreases with increasing N content. The temperature-dependent absorption spectra are simulated within the so-called band anticrossing model of the interaction between the extended conduction band states of the GaSb and the localized states associated with the N atoms. The N next-nearest neighbor pair states are found to be responsible for the temperature insensitivity of the band gap of the GaNSb alloys as a result of their proximity to the conduction band edge giving them a more pronounced role than in GaNAs alloys

    Novel olfactory ligands via terpene synthases

    Get PDF
    A synthetic biology approach to the rational design of analogues of olfactory ligands by providing unnatural substrates for the enzyme synthesising (S)-germacrene D, an olfactory ligand acting as a plant derived insect repellent, to produce novel ligands is described as a viable alternative to largely unsuccessful ligand docking studies. (S)-14,15-Dimethylgermacrene D shows an unexpected reversal in behavioural activity

    Inefficient weapon—the role of plant secondary metabolites in cotton defence against the boll weevil

    Get PDF
    Plant cultivar selection for resistance to herbivore pests is an effective, environmentally safe and inexpensive method to implement in integrated pest management programs. In this study, we evaluated seven cotton genotypes with respect to the production of volatile organic compounds (VOCs) and non-volatile compounds (terpenoid aldehydes (TAs)), and the attraction and feeding preference of adult boll weevils. Chemical analyses of VOCs from BRS-293, BRS-Rubi, CNPA TB-15, CNPA TB-85, CNPA TB-90, Delta Opal, and Empire Glandless showed that there were few qualitative and quantitative differences across the range of genotypes. In contrast, major differences in TA content were observed, with CNPA TB-15 and CNPA TB-85 producing higher levels of TAs compared to the other genotypes. Our results showed that boll weevil attraction and feeding behaviour was not positively or negatively influenced by the terpenoid content (volatile and non-volatile compounds) of cotton genotypes. The results in this study suggest that boll weevils have adapted physiologically to cope with cotton chemical defence mechanisms

    Sustainable risk management of emerging contaminants in municipal wastewaters

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Royal Society.The presence of emerging contaminants in municipal wastewaters, particularly endocrine-disrupting compounds such as oestrogenic substances, has been the focus of much public concern and scientific attention in recent years. Due to the scientific uncertainty still surrounding their effects, the Precautionary Principle could be invoked for the interim management of potential risks. Therefore, precautionary prevention risk-management measures could be employed to reduce human exposure to the compounds of concern. Steroid oestrogens are generally recognized as the most significant oestrogenically active substances in domestic sewage effluent. As a result, the UK Environment Agency has championed a ‘Demonstration Programme’ to investigate the potential for removal of steroid oestrogens and alkylphenol ethoxylates during sewage treatment. Ecological and human health risks are interdependent, and ecological injuries may result in increased human exposures to contaminants or other stressors. In this context of limiting exposure to potential contaminants, examining the relative contribution of various compounds and pathways should be taken into account when identifying effective risk-management measures. In addition, the explicit use of ecological objectives within the scope of the implementation of the EU Water Framework Directive poses new challenges and necessitates the development of ecosystem-based decision tools. This paper addresses some of these issues and proposes a species sensitivity distribution approach to support the decision-making process related to the need and implications of sewage treatment work upgrade as risk-management measures to the presence of oestrogenic compounds in sewage effluent

    Identification of semiochemicals from cowpea, Vigna unguiculata, for low-input management of the Legume Pod Borer, Maruca vitrata

    Get PDF
    Cowpea, Vigna unguiculata L. Walp. (Fabaceae), is one of the most important food legumes grown on the African continent, as it provides an affordable source of dietary protein. Yields of cowpea are significantly reduced through damage by legume pod-borer, Maruca vitrata (Lepidoptera: Crambidae), caterpillars to flowers, tender leaves and pods. Semiochemical-based strategies are considered as environmentally benign and affordable for pest management, particularly on smallholder farms. In this study, we investigated the importance of cowpea flower volatiles as host location cues for egg-laying M. vitrata, and herbivore-induced plant volatiles (HIPVs) as M. vitrata repellents and natural enemy (Apanteles taragamae and Phanerotoma syleptae parasitoid) attractants. In oviposition choice assays, M. vitrata laid more eggs on flowering cowpea plants than non-flowering plants. Coupled gas chromatography-electrophysiology (GC-EAG) analysis using the antennae of female M. vitrata and an extract of flower volatiles collected by dynamic headspace collection revealed the presence of five EAG-active components that were identified by coupled GC-mass spectrometry (GC-MS) analysis as benzaldehyde, benzyl alcohol, acetophenone, a vinylbenzaldehyde isomer and (E)-cinnamaldehyde. A synthetic blend of the identified compounds, prepared using 3-vinylbenzaldehyde, induced M. vitrata to lay as many eggs on non-flowering cowpea as on flowering plants. The moths also preferred laying eggs on intact plants compared to M. vitrata-infested plants. As the emission of EAG-active floral compounds was determined to be lower in the headspace of infested cowpea flowers, the role of HIPVs emitted by M. vitrata-damaged leaves was also investigated. Of the compounds induced by larval damage, (E)-DMNT, indole, n-hexyl acetate, 1-octen-3-ol and linalool were shown by GC-EAG to possess electrophysiological activity. A synthetic blend of the EAG-active compounds, using racemic 1-octen-3-ol and linalool, significantly reduced egg numbers on flowering cowpea. Larval and egg parasitoids, i.e. A. taragamae and Ph. syleptae, respectively, of M. vitrata both preferred the Y-tube olfactometer arm treated with synthetic (E)-DMNT, whereas preference for racemic linalool and (E)-nerolidol was dose-dependent in A. taragamae. Our results provide the platform for the development of future semiochemical-based pest management strategies against M. vitrata on smallholder farms in West Africa

    Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x <= 0.034

    Get PDF
    Contactless electroreflectance is applied to study the band gap (E-0) and spin-orbit splitting (Delta(SO)) in InP1-xBix alloys with 0 < x <= 0.034. The E-0 transition shifts to longer wavelengths very significantly (-83 meV/% Bi), while the E0 + Delta(SO) transition shifts very weakly (-13 meV/% Bi) with the rise of Bi concentration. These changes in energies of optical transitions are discussed in the context of the valence band anticrossing model and ab initio calculations. Shifts of E-0 and E-0 + Delta(SO) transitions, obtained within ab-initio calculations, are -106 and -20 meV per % Bi, respectively, which is in a good agreement with experimental results

    Bi-induced band gap reduction in epitaxial InSbBi alloys

    Get PDF
    The properties of molecular beam epitaxy-grown InSb1−xBix alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 Å. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ∼88 meV (14.1 μm) for InSb0.976Bi0.024, a reduction of ∼35 meV/%Bi. The work at Liverpool and Warwick was supported by the University of Liverpool and the Engineering and Physical Sciences Research Council (EPSRC) under Grant Nos. EP/G004447/2 and EP/H021388/1. RBS measurements performed at Lawrence Berkeley National Lab were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Barry Karlin and Joe Woicik are thanked for use of the X24a HAXPES end station at the National Institute of Standards and Technology bending magnet beamline X24 at the National Synchrotron Light Source at Brookhaven National Laboratory. The National Synchrotron Light Source is supported by the U.S. Department of Energy, Contract No. DE-AC02-98CH10886. The work at Binghamton was supported by a Grant from State University of New York Research Foundation Collaboration Fund
    • …
    corecore